Given the following information:
![\begin{tabular} {|p{1.5cm}|p{1.5cm}|p{1.2cm}|p{1.2cm}|p{1.2cm}|} \multicolumn{1}{|p{1.5cm}|}{State of economy}\multicolumn{1}{|p{2.6cm}|}{Probability of State of economy}\multicolumn{3}{|p{4.8cm}|}{Rate of Return if State Occurs}\\[1ex] \multicolumn{1}{|p{1.5cm}|}{}\multicolumn{1}{|p{2.6cm}|}{}\multicolumn{1}{|c|}{Stock A}&StockB&Stock C\\[2ex] \multicolumn{1}{|p{1.5cm}|}{Boom}\multicolumn{1}{|p{2.6cm}|}{0.66}\multicolumn{1}{|p{1.27cm}|}{0.09}&0.03&0.34\\ \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cp%7B1.5cm%7D%7Cp%7B1.5cm%7D%7Cp%7B1.2cm%7D%7Cp%7B1.2cm%7D%7Cp%7B1.2cm%7D%7C%7D%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7BState%20of%20economy%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7BProbability%20of%20State%20of%20economy%7D%5Cmulticolumn%7B3%7D%7B%7Cp%7B4.8cm%7D%7C%7D%7BRate%20of%20Return%20if%20State%20Occurs%7D%5C%5C%5B1ex%5D%20%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7B%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7B%7D%5Cmulticolumn%7B1%7D%7B%7Cc%7C%7D%7BStock%20A%7D%26StockB%26Stock%20C%5C%5C%5B2ex%5D%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7BBoom%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7B0.66%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.27cm%7D%7C%7D%7B0.09%7D%260.03%260.34%5C%5C%0A%5Cend%7Btabular%7D)

Part A:
The expected return on an equally
weighted portfolio of these three stocks is given by:
![0.66[0.33 (0.09) + 0.33 (0.03) + 0.33(0.34)] \\ +0.34[0.33 (0.23) + 0.33(0.29) +0.33(-0.14)] \\ \\ =0.66(0.0297 + 0.0099 + 0.1122)+0.34(0.0759+0.0957-0.0462) \\ \\ =0.66(0.1518)+0.34(0.1254)=0.1002+0.0426=0.1428=\bold{14.28\%}](https://tex.z-dn.net/?f=0.66%5B0.33%20%280.09%29%20%2B%200.33%20%280.03%29%20%2B%200.33%280.34%29%5D%20%5C%5C%20%2B0.34%5B0.33%20%280.23%29%20%2B%200.33%280.29%29%20%2B0.33%28-0.14%29%5D%20%5C%5C%20%20%5C%5C%20%3D0.66%280.0297%20%2B%200.0099%20%2B%200.1122%29%2B0.34%280.0759%2B0.0957-0.0462%29%20%5C%5C%20%20%5C%5C%20%3D0.66%280.1518%29%2B0.34%280.1254%29%3D0.1002%2B0.0426%3D0.1428%3D%5Cbold%7B14.28%5C%25%7D)
Part B:
Value of a portfolio invested 21
percent each in A and B and 58 percent in C is given by
For boom: 0.21(0.09) + 0.21(0.03) + 0.58(0.34) = 0.0189 + 0.0063 + 0.1972 = 0.2224 or 22.24%.
For bust: = 0.21(0.23) + 0.21(0.29) + 0.58(-0.14) = 0.0483 + 0.0609 - 0.0812 = 0.028 or 2.8%
Expected return = 0.66(0.2224) + 0.34(0.028) = 0.1468 + 0.00952 = 0.1563 or 15.63%
The variance is given by
56 dived by 2 equals 28. 28=green ribbon. Brown ribbon is 4 times as long. 28 times 4 equals 112. The brown ribbon is 112 cm long.
Answer:
Type II error
Step-by-step explanation:
According to the definition of type II error, the type II error arises when we wrongfully accept the null hypothesis. It means that when we accept our null hypothesis and null hypothesis is not correct then type II error arises. So according to situation we are accepting the null hypothesis that the food is safe but it is actually not safe. Hence the given situation represents type II error.
Answer:
m = -5/2
Step-by-step explanation:
Solve for slope with the following equation:
<em>m </em>(slope) = (y₂ - y₁)/(x₂ - x₁)
Let:
(4 , -12) = (x₁ , y₁)
(-2 , 3) = (x₂ , y₂)
Plug in the corresponding numbers to the corresponding variables:
<em>m </em>= (3 - (-12))/(-2 - 4)
<em>m</em> = (3 + 12)/(-2 - 4)
<em>m </em>= (15)/(-6)
Simplify the slope:
<em>m</em> = -(15/6) = -5/2
-5/2 is your slope.
~