Answer:

(0, 6)
(1,
)
(2, 7)
Step-by-step explanation:
Just implement x and solve for y.
Answer:
43°
Step-by-step explanation:
<h2>
<u>Equation:</u></h2>
<u />
m∠ABD = m∠1 + m∠2
Substitute:
68° = m∠1 + (m∠1 + 18°)
<h2>
<u>Solve:</u></h2>
68° = m∠1 + (m∠1 + 18°)
68° = 2(m∠1) + 18°
50° = 2(m∠1)
25 = m∠1
<h2>
<u>Solution:</u></h2>
<u />
Know that we know that m∠1 is, we can add 18* to find m∠2
25° + 18° = 43°
-Chetan K
Answer:
Convert
r
=
8
cos
θ
−
2
sin
θ
to Cartesian form
#x^2 + y^2 - 8 x +2 y = 0, using
r
=
√
x
2
+
y
2
≥
0
and
(
x
,
y
)
=
r
(
cos
θ
,
sin
θ
)
.
The Socratic graph of this circle,
with center at
(
4
,
−
1
)
and radius
√
17
.
is immediate.
graph{(x^2+y^2-8x+2y)((x-4)^2+(y+1)^2-0.04)=0[-1 23 -6 6] }
Answer:
Graphs
Step-by-step explanation: