Answer:
C = (2,2)
Step-by-step explanation:
B = (10 ; 2)
M = (6 ; 2)
C = (x ; y )
|___________|___________|
B (10;2) M (6;2) C ( x; y)
So:
dBM = dMC
√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 6)^2]
(2-2)^2 - (6-10)^2 = (y-2)^2 + (x - 6)^2
0 + (-4)^2 = (y-2)^2 + (x - 6)^2
16 = (y-2)^2 + (x - 6)^2
16 - (x - 6)^2 = (y-2)^2
Also:
2*dBM = dBC
2*√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 10)^2]
4*[(0)^2 + (-4)^2] = (y-2)^2 + (x - 10)^2
4*(16) = (y-2)^2 + (x - 10)^2
64 = (y-2)^2 + (x - 10)^2
64 = 16 - (x - 6)^2 + (x - 10)^2
48 = (x - 10)^2 - (x - 6)^2
48 = x^2 - 20*x + 100 - x^2 + 12*x - 36
48 = - 20*x + 100 + 12*x - 36
8*x = 16
x = 2
Thus:
16 - (x - 6)^2 = (y-2)^2
16 - (2 - 6)^2 = (y-2)^2
16 - (-4)^2 = (y-2)^2
16 - 16 = (y-2)^2
0 = (y-2)^2
0 = y - 2
2 = y
⇒ C = (2,2)
You have a line:
y=mx+b (slope-intercepted form)
m=slope of this line.
The slope of a line perpendicular to that given line will be: ´"m´"
m´=-1/m.
For example:
y=8x+3
m=8
The solpe fo a line perpendicular to "y=8x+3" is:
m`=-1/8
A unique decimal that I encounter regularly is "0.05". I encounter this almost every day, when I go to the store to buy something, the saleslady gives me $0.05 as change. When I go home and put some of my extra money in my piggy bank, I hold a $0.05 in my hand.
D at least 1722.08 because you multiply 22042 by 42 then you divide by 100 and add 1375 to get d at least $1375.
I Hope This Helped!!
$45+$18+$26-$21-$93
45+18=63
63+18=81
81+26=107
107-21=86
86-93=-7