1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
creativ13 [48]
3 years ago
7

Simplify.√75 A.3√5 B.15√5 C.25√3 D. 5√3

Mathematics
1 answer:
stich3 [128]3 years ago
6 0
D, square root of 75= 5 square root 3
You might be interested in
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
What is the vertex of a parabola defined by the equation <br> x = 5y2?
QveST [7]

Find the critical points of f(y):Compute the critical points of -5 y^2
To find all critical points, first compute f'(y):( d)/( dy)(-5 y^2) = -10 y:f'(y) = -10 y
Solving -10 y = 0 yields y = 0:y = 0
f'(y) exists everywhere:-10 y exists everywhere
The only critical point of -5 y^2 is at y = 0:y = 0
The domain of -5 y^2 is R:The endpoints of R are y = -∞ and ∞
Evaluate -5 y^2 at y = -∞, 0 and ∞:The open endpoints of the domain are marked in grayy | f(y)-∞ | -∞0 | 0∞ | -∞
The largest value corresponds to a global maximum, and the smallest value corresponds to a global minimum:The open endpoints of the domain are marked in grayy | f(y) | extrema type-∞ | -∞ | global min0 | 0 | global max∞ | -∞ | global min
Remove the points y = -∞ and ∞ from the tableThese cannot be global extrema, as the value of f(y) here is never achieved:y | f(y) | extrema type0 | 0 | global max
f(y) = -5 y^2 has one global maximum:Answer: f(y) has a global maximum at y = 0

3 0
3 years ago
Sam is 4 feet and 5 inches tall. if sam grows 11 more inches, what will be his new height?
jok3333 [9.3K]
Sam will be 5 foot 4 inches
5 0
3 years ago
Read 2 more answers
HUUURRRYYYY PLEASEEEEE!!!!!!!What is the approximate volume of a cone with a height of 6 mm and radius of 18 mm? Use 3.14 to app
bulgar [2K]
V=pir^2(h/3)
V= 3.14x18^2x6/3
V= about <span>2034.72</span>
3 0
3 years ago
Geet sells televisions. He earns a fixed amount for each television and an additional $25 if the buyer gets an extended warranty
adoni [48]

Answer:

50 dollars.

Step-by-step explanation:

19 x 25= 475

1,425 - 475= 950

950 divided by 19 is 50.

4 0
3 years ago
Read 2 more answers
Other questions:
  • What lowest terms fraction is equal to 15%?
    10·1 answer
  • 90 POINTS!!!!! Given: KLIJ inscr. in k(O),m∠K = 64°, measure of arc LI = 69°, measure of arc IJ = 59°, measure of arc KJ =97°
    14·1 answer
  • Graph the equation. y=3(x+1)^2-2 <br> HELP!!
    8·1 answer
  • Stephanie and 2 friends went to Vancouver for a winter weekend. Stephanie made 7 cups of apple cider. Everyone, including, Steph
    12·2 answers
  • Stan has an income of £2000 a month. He spends 2/5 of his income on rent. He spends 3/20 of his income on bills. He spends 1/10
    5·2 answers
  • A is the point (5, 7) and B is the point (9, -1)" Find the equation of the line AB
    13·2 answers
  • Help I don’t understand
    10·1 answer
  • Solve three fourths times two thirds(PLEASE i'M FAILING MATH!!!!!!!!!!!!!!!!!!)
    6·2 answers
  • Question
    8·1 answer
  • Nick made his histogram showing the number of sport caps each of his friends own.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!