The volume that is left to be filled is approximately: 3,332.6 in.³
<h3>What is the Volume of a Box?</h3>
Volume of a box = (length)(width)(height)
Given the following:
Volume of the bat = 82 cubic in.
Length of box = 30 in.
Width = 18.97 in.
Height = 6 in.
The remaining volume to be filled = volume of box - volume of bat
= (30)(18.97)(6) - 82
= 3,332.6 in.³
Learn more about the volume of a box on:
brainly.com/question/14957364
#SPJ1
<h2>Hello!</h2>
The answer is:
C. Cosine is negative in Quadrant III
<h2>
Why?</h2>
Let's discard each given option in order to find the correct:
A. Tangent is negative in Quadrant I: It's false, all functions are positive in Quadrant I (0° to 90°).
B. Sine is negative in Quadrant II: It's false, sine is negative in positive in Quadrant II. Sine function is always positive coming from 90° to 180°.
C. Cosine is negative in Quadrant III. It's true, cosine and sine functions are negative in Quadrant III (180° to 270°), meaning that only tangent and cotangent functions will be positive in Quadrant III.
D. Sine is positive in Quadrant IV: It's false, sine is negative in Quadrant IV. Only cosine and secant functions are positive in Quadrant IV (270° to 360°)
Have a nice day!
Answer:
Choice D is correct
Step-by-step explanation:
The first step is to write the polar equation of the conic section in standard form by dividing both the numerator and the denominator by 2;
The eccentricity of this conic section is thus 1, the coefficient of cos θ. Thus, this conic section is a parabola since its eccentricity is 1.
The value of the directrix is determined as;
d = k/e = 3/1 = 3
The denominator of the polar equation of this conic section contains (-cos θ) which implies that this parabola opens towards the right and thus the equation of its directrix is;
x = -3
Thus, the polar equation represents a parabola that opens towards the right with a directrix located at x = -3. Choice D fits this criteria