Answer:
18.62 m/s
Explanation:
Given that:
A liquid with a density of 900 kg/m 3 is stored in a pressurized, closed storage tank.
Diameter of the tank = 10 m
The absolute pressure in the tank above the liquid is 200 kPa = 200, 000 Pa
At pressure of 200 kPa ; the final velocity = 0
Atmospheric pressure at 5cm = 101325 Pa
We are to calculate the initial velocity of a fluid jet when a 5cm diameter orifice is opened at point A?
By using Bernoulli's theorem between the shaded portion in the diagram;
we have:




where;
Pa = atmospheric pressure = 101325 Pa
= density of liquid = 900 kg/m³
= initial velocity = ???
g = 9.8 m/s²
= height of the hole from the buttom
= height of the liquid surface from the button


Thus, the initial velocity of the fluid jet = 18.62 m/s
Well sustainability means the ability of future generations to meet their own needs so technology gets in the way of things getting done and is distracting in some ways. i hope this helps!
Answer:
C
Explanation:
To melt the alcohol
Heat needed = M . L = 2 . 25 = 50 kcal
To warm up the alcohol
Heat needed = M . sp. ht. . ∆t = 2 . 0.6 . 100 = 120 kcal
Total heat needed = 170 kcal
Assuming that 0.6 kcal/ kg / ˚C is the specific heat and that the answer is wanted in kcal ( a rather odd unit to be in use here.)
The time it takes the plane to change its velocity is 9s.
<h3>What is time?</h3>
Time can be defined the measured or measurable period during which an action, process, or condition exists or continues.
To calculate the time it takes the airplane to change its velocity, we use the formula below.
Formula:
- t = (v-u)/a.......... Equation 1
Where:
- a = Acceleration
- v = Final velocity
- u = Initial velocity
- t = time
From the question,
- v = 40 m/s
- u = 22 m/s
- a = 2 m/s²
Substitute these values into equation 1
- t = (40-22)/2
- t = 18/2
- t = 9s
Hence, the time it takes the plane to change its velocity is 9s.
Learn more about time here: brainly.com/question/2854969
<span>Answer:
No, because Einstein demonstrated that nothing can exceed the speed of light in a vacuum and for something to happen instantly over that distance would require that speed to be exceeded. If somehow the sun were to vanish, without explosive effects, an enormous gravity wave would begin travelling outward affecting the planets at the speed of light - thus taking about 8 minutes to reach earth.
But that is irrelevant because the only way to remove all that matter would be total conversion of the mass to energy and that energy would totally destroy everything - after the same 8 minutes.
Mike1942f · 9 years ago</span>