OPTIONS :
A.) the force that the ball exerts on the wall
B.) the frictional force between the wall and the ball
C.) the acceleration of the ball as it approaches the wall
D.) the normal force that the wall exerts on the ball
Answer: D.) the normal force that the wall exerts on the ball
Explanation: The normal force acting on an object can be explained as a force experienced by an object when it comes in contact with a flat surface. The normal force acts perpendicular to the surface of contact.
In the scenario described above, Erica's tennis ball experiences an opposite reaction after hitting the wall.This is in relation to Newton's 3rd law of motion, which states that, For every action, there is an equal and opposite reaction.
The reaction force in this case is the normal force exerted on the ball by the wall perpendicular to the surface of contact.
Answer:
Einstein's general theory of relativity is the theory behind black holes has been tested with a wide range of experiments of which all confirm the predictions the theory makes. We cannot see black holes phenomena inside the event horizon, we do observe things outside this limit.
Black holes in binary star systems leave signs of their presence on neighboring star thats detected and the signs include X-ray emissions, accretion disks, and large orbit perturbations.
this is the evidence that astronomers and physicists have to show that the theory about black holes is correct.
Answer:
The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases
Answer:
B
Explanation:
Newton's first law of motion states that a body will remain in its state of rest or if its in motion will continue to move in a straight line, unless its acted upon by an external force.The ability of an object to stay at rest or in motion if its in motion is known as inertia.
Hence the correct option is B.
Answer:
15.8 V
Explanation:
The relationship between capacitance and potential difference across a capacitor is:

where
q is the charge stored on the capacitor
C is the capacitance
V is the potential difference
Here we call C and V the initial capacitance and potential difference across the capacitor, so that the initial charge stored is q.
Later, a dielectric material is inserted between the two plates, so the capacitance changes according to

where k is the dielectric constant of the material. As a result, the potential difference will change (V'). Since the charge stored by the capacitor remains constant,

So we can combine the two equations:

and since we have
V = 71.0 V
k = 4.50
We find the new potential difference:
