Answer:
<em>The 95% confidence interval for the population mean mileage is </em>
(27.917, 29.593)
The 98% confidence interval for the population mean mileage
(27.737, 29.762)
Step-by-step explanation:
<u><em>Step(i):-</em></u>
<em>Given that the random sample size 'n' = 64</em>
<em>Given that the mean of sample x⁻ = 28.75miles</em>
<em>Given that the standard deviation of the sample (S) = 3.4 miles</em>
<em>Degrees of freedom = n-1 = 64-1 =63</em>
<em>t₀.₀₅ = 1.9983</em>
<u>Step(ii):-</u>
<em>95% confidence interval for the population mean mileage is determined by</em>
<em />
<em />

(28.75 - 0.845 , 28.75 + 0.845)
(27.917 , 29.593)
<u><em>Step(iii</em></u>):-
<em>98% confidence interval for the population mean mileage is determined by</em>
<em />
<em />

(28.75 - 1.01252 , 28.75 + 1.01252)
(27.737 , 29.762)
<u><em>Final answer:-</em></u>
<em>98% confidence interval for the population mean mileage is </em>
(27.737 , 29.762)
<u><em /></u>
<em />