This problem is to let you practice using Newton's second law of motion:
Force = (mass) x (acceleration)
-- The airplane's mass when it takes off (before it burns any of its load of fuel) is 320,000 kg.
-- The force available is (240,000 N/per engine) x (4 engines) = 960,000 N.
-- Now you know ' F ' and ' mass '. Use Newton's second law of motion to calculate the plane's acceleration.
<h2>
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.</h2>
Explanation:
One period means time taken to complete one revolution.
In case of swings in one period time it travels the same position through two times.
Here we need to find how many times does the child swing through the swing's equilibrium position during the course of 3 period(s) of motion.
For 1 period = 2 times
For 3 periods = 3 x For 1 period
For 3 periods = 3 x 2 times
For 3 periods = 6 times
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.
Answer:
4
Explanation:
It has 8 O atoms and 4 O2(g) molecules
At the entrance of most beaches, there is a bulletin board with notices about water conditions: maybe a faded sign warning about rip currents and a list of this week's tide tables. Most people pass them by without a second thought, but if you want to enter the ocean, it is important to know its movements, whether to avoid being caught in a riptide or to figure out when the waves will be at their best.
Hope this helps
To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,

Through the aforementioned formula we will have to

The particulate part of the rest, so the final speed would be



Now from Newton's second law we know that

Here,
m = mass
a = acceleration, which can also be written as a function of velocity and time, then

Replacing we have that,


Therefore the force that the water exert on the man is 1386.62