The equation for momentum is p =
mv where p is the omentum, m is the mass and v is the velocity. Calculating the
momentum for each football player, player A will have a momentum of 1050
lb-mi/h and player B will have a momentum of 570 lb-mi/h. Therefore, momentum of player A is greater than that of
player B.
Answer:
Tension= 21,900N
Components of Normal force
Fnx= 17900N
Fny= 22700N
FN= 28900N
Explanation:
Tension in the cable is calculated by:
Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium
FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)
Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)
Ftorque= 2/3FBcostheta+ 4/3FWcostheta
Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°
Ftorque= 21900N
b) components of Normal force
Efx=FNx-FTcos(90-theta)=0 static equilibrium
Fnx=21900cos(90-55)=17900N
Fy=FNy+ FTsin(90-theta)-FB-FW=0
FNy= -FTsin(90-55)+FB+FW
FNy= -21900sin(35)+(1350+2250)×9.81=22700N
The Normal force
FN=sqrt(17900^2+22700^2)
FN= 28.900N
Answer:
it would be 3
Explanation:
because you have to divide the length by the height of the incline.
It would mean that only one side of earth would be light and the other dark all the time also we would only see the sun on one side and on the other we see the moon
Linear momentum has to be conserved. It was zero before the thread eas burned ... when nothing was moving ... so the momentum of the masses moving in opposite directions has to add up to zero. ... Momentum = mass times speed. ... In one direction, you have 5 kg times 1/5 m/s= 1 kg-m/s. ... We need 1 kg-m/s in the other direction. ... 7 kg times speed = 1 kg-m/s. ... Can you finish it from here ?