I think it’s output because output work is work done by a machine
Answer:
7.0 m
Explanation:
Step 1: Given data
Initial speed of the ball (u): 1.8 m/s
Acceleration (a): 6.1 m/s²
Final speed of the ball (v): 9.4 m/s
Step 2: Calculate the displacement (s) of the ball
The ball is moving with a uniformly accelerated rectilinear motion. We can calculate the displacement using the following suvat equation.
v² = u² + 2 × a × s
s = (v² - u²)/2 × a
s = [(9.4 m/s)² - (1.8 m/s)²]/2 × 6.1 m/s²
s = 7.0 m
Answer:
500 Pa
Explanation:
Convert given units to SI:
100 dyne = 0.001 N
0.02 cm² = 2×10⁻⁶ m²
Pressure = force / area
P = 0.001 N / (2×10⁻⁶ m²)
P = 500 Pa
In finding the distance that covers we simply add the three km which is
12 + 4 + 1 = 17km
17 km is the distance they cover.
We are going to use the displacement formula which is
d = vt + 1/2 at^2
d = 11.7 km
11.7 is the displacement