Sorry but I can’t see the picture
10(3+4)= 30+40
I factored the 10 and put it on the outside
Answer:
∡ABC=55°
Step-by-step explanation:
<u>Step 1: Identify all angles</u>
∠A=(x+45)°
∠B=(6x+5)°
∠C=(3x)°
∠ABC=(180-∠B)°=(180-(6x+5))°
<u>Step 2: Use the Triangle Angle Sum Theorem</u>
∠A+∠ABC+∠C=180°
(x+45)+(180-(6x+5))+(3x)=180
x+45+180-6x-5+3x=180
-2x+45+180-5=180
-2x+45-5=0
-2x+40=0
-2x=-40
x=20
<u>Step 3: Plug in x=20 for ∠ABC</u>
∠ABC=(180-(6x+5))°
(180-6(20)-5)°
(180-120-5)°
(60-5)°
55°
So ∡ABC=55°
Answer:
Step-by-step explanation:
In Δ AFB,
∠AFB + ∠ABF + ∠A = 180 {Angle sum property of triangle}
90 + 48 + ∠1 = 180
138 + ∠1 = 180
∠1 = 180 - 138
∠1 = 42°
FC // ED and FD is transversal
So, ∠CFD ≅∠EDF {Alternate interior angles are congruent}
∠2 = 39°
In ΔFCD,
∠2 + ∠3 + ∠FCD = 180
39 + ∠3 + 90 = 180
129 +∠3 = 180
∠3 = 180- 129
∠3 = 51°
Answer:
x = 3
Step-by-step explanation:
4 - 7x = 1 - 6x (Given)
4 - 1 - 7x = 1 - 1 - 6x (Subtraction Property of Equality)
3 - 7x = -6x (Simplify)
3 - 7x + 7x = -6x + 7x (Addition Property of Equality)
3 = x (Simplify)
x = 3 (Symmetric Property of Equality)