A. Let us first assume that the gas acts like an ideal
gas so that we can use the ideal gas equation:
PV = nRT
where P is pressure, V is volume, n is number of moles, R
is universal gas constant and T is absolute temperature
In this case, let us assume that nRT = constant so that:
P1V1 = P2V2
400 mm Hg * 400 mL = P2 * 200 mL
P2 = 800 mm Hg
<span>B. The collision of gas with the walls of the container
produces Pressure.</span>
Answer:
2i: 169.71
2ii: 0.17L
3a: 4×10⁻⁵
3b: 110011
Step-by-step explanation:
2i. The surface of the top and bottom of the tin is two times (top and bottom) π·r² = 2·π·3² = 18π cm².
The circumference of the circle is 2·π·r = 6π cm².
The area of the material connecting top and bottom is a rectangle of the tin height times the circumference: 6·6π = 36π cm².
This gives a total of 18π + 36π = 54π cm².
With π approximated by 22/7 the total surface area is 54*22/7 ≈ 169.71.
Notice how the calculation is simple by waiting until the very last moment to substitute π.
2ii. The volume is the area π·r² of the circle times the height of the tin: 9π*6 = 54π cm³ ≈ 169.71 cm³.
Since 1L = 1000 cm³ the volume is 0.16971 litres, which should be rounded to 0.17 L.
3a: If we rewrite P as 36 x 10⁻⁴ and realize that 36/2.25 = 16, then the fraction can be written as
16 x 10⁻⁴⁻⁶ = 16 x 10⁻¹⁰.
The square root of that is taking it to the power of 1/2, so (16x10⁻¹⁰)^0.5 = 4x10⁻⁵ = 0.00004
3b: 1111 1111 is 255 in decimal. 101 is 5 in decimal. 255/5 is 51 in decimal. 51 in binary is 110011.
Answer:
1) 
2) 
3) 
Step-by-step explanation:
To write logs of the form
in their exponential form, you take the base b and put it to the power of x and then set that equal to a:
.
1. Here, b = 5, a = 25, and x = 2, so: 
2. In this problem, b = 5, x = 2, and a = x, so: 
3. Finally, here, b = b, a = 64, and x = 3, so: 
Hope this helps!
Answer:

Step-by-step explanation:
Answer:
72.73
Step-by-step explanation: