The answer would have to be D
Answer:
The greater the sample size the better is the estimation. A large sample leads to a more accurate result.
Step-by-step explanation:
Consider the table representing the number of heads and tails for all the number of tosses:
Number of tosses n (HEADS) n (TAILS) Ratio
10 3 7 3 : 7
30 14 16 7 : 8
100 60 40 3 : 2
Compute probability of heads for the tosses as follows:

The probability of heads in case of 10 tosses of a coin is -0.20 away from 50/50.

The probability of heads in case of 30 tosses of a coin is -0.033 away from 50/50.

The probability of heads in case of 100 tosses of a coin is 0.10 away from 50/50.
As it can be seen from the above explanation, that as the sample size is increasing the distance between the expected and observed proportion is decreasing.
This happens because, the greater the sample size the better is the estimation. A large sample leads to a more accurate result.
Answer:
A(t) = 300 -260e^(-t/50)
Step-by-step explanation:
The rate of change of A(t) is ...
A'(t) = 6 -6/300·A(t)
Rewriting, we have ...
A'(t) +(1/50)A(t) = 6
This has solution ...
A(t) = p + qe^-(t/50)
We need to find the values of p and q. Using the differential equation, we ahve ...
A'(t) = -q/50e^-(t/50) = 6 - (p +qe^-(t/50))/50
0 = 6 -p/50
p = 300
From the initial condition, ...
A(0) = 300 +q = 40
q = -260
So, the complete solution is ...
A(t) = 300 -260e^(-t/50)
___
The salt in the tank increases in exponentially decaying fashion from 40 grams to 300 grams with a time constant of 50 minutes.
Answer:
61
Step-by-step explanation:
Please give me brainliest :)