1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulsSmile [24]
3 years ago
11

Solve for B ab +c=d

Mathematics
2 answers:
Dafna1 [17]3 years ago
7 0

Answer:

b \:  =  \: d \:  -  \: c  \:  \div a

Step-by-step explanation:

ab + c = d

ab = d - c

b = d - c/a

steposvetlana [31]3 years ago
5 0

Answer:

ab + c = d  

ab = d - c

Divide both sides by a

ab/a = d-c/a

b = d - c/ a

Step-by-step explanation:

You might be interested in
Practice Add and Subtract Rationals - Quiz - Level G
goblinko [34]

Answer:

0

Step-by-step explanation:

4 0
3 years ago
Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of
Black_prince [1.1K]

Answer:

The first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 are:

f\left(x\right)\approx P\left(x\right) = \frac{7}{3}- \frac{7}{9}\left(x-2\right)+\frac{7}{27}\left(x-2\right)^{2}- \frac{7}{81}\left(x-2\right)^{3}+\frac{7}{243}\left(x-2\right)^{4}

Step-by-step explanation:

The Taylor series of the function <em>f </em>at <em>a </em>(or about <em>a</em> or centered at <em>a</em>) is given by

f\left(x\right)=\sum\limits_{k=0}^{\infty}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k

To find the first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 you must:

In our case,

f\left(x\right) \approx P\left(x\right) = \sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k=\sum\limits_{k=0}^{4}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k

So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.

  • f^{(0)}\left(x\right)=f\left(x\right)=\frac{7}{x + 1}

Evaluate the function at the point: f\left(2\right)=\frac{7}{3}

  • f^{(1)}\left(x\right)=\left(f^{(0)}\left(x\right)\right)^{\prime}=\left(\frac{7}{x + 1}\right)^{\prime}=- \frac{7}{\left(x + 1\right)^{2}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime }=- \frac{7}{9}

  • f^{(2)}\left(x\right)=\left(f^{(1)}\left(x\right)\right)^{\prime}=\left(- \frac{7}{\left(x + 1\right)^{2}}\right)^{\prime}=\frac{14}{\left(x + 1\right)^{3}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime }=\frac{14}{27}

  • f^{(3)}\left(x\right)=\left(f^{(2)}\left(x\right)\right)^{\prime}=\left(\frac{14}{\left(x + 1\right)^{3}}\right)^{\prime}=- \frac{42}{\left(x + 1\right)^{4}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime \prime }=- \frac{14}{27}

  • f^{(4)}\left(x\right)=\left(f^{(3)}\left(x\right)\right)^{\prime}=\left(- \frac{42}{\left(x + 1\right)^{4}}\right)^{\prime}=\frac{168}{\left(x + 1\right)^{5}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime \prime \prime }=\frac{56}{81}

Apply the Taylor series definition:

f\left(x\right)\approx\frac{\frac{7}{3}}{0!}\left(x-\left(2\right)\right)^{0}+\frac{- \frac{7}{9}}{1!}\left(x-\left(2\right)\right)^{1}+\frac{\frac{14}{27}}{2!}\left(x-\left(2\right)\right)^{2}+\frac{- \frac{14}{27}}{3!}\left(x-\left(2\right)\right)^{3}+\frac{\frac{56}{81}}{4!}\left(x-\left(2\right)\right)^{4}

The first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 are:

f\left(x\right)\approx P\left(x\right) = \frac{7}{3}- \frac{7}{9}\left(x-2\right)+\frac{7}{27}\left(x-2\right)^{2}- \frac{7}{81}\left(x-2\right)^{3}+\frac{7}{243}\left(x-2\right)^{4}

8 0
3 years ago
a number cube is rolled 24 times and lands on 2 four times and on 6 three times.What is experimental probability of landing on 2
Aleksandr [31]
Theory 4 times experimental 6 times 
5 0
3 years ago
What is the first quartile of the following data set
krok68 [10]

Answer:

The first quartile, Q1, is the median of {3, 5, 7, 8}. Since there is an even number of values, we need the mean of the middle two values to find the first quartile: .

Step-by-step explanation:

Example 1: Find the first and third quartiles of the set {3, 7, 8, 5, 12, 14, 21, 15, 18, 14}

8 0
3 years ago
1. Una proposición que necesita ser demostrada y que cuya demostración consta de un conjunto de razonamientos se llama:
Mademuasel [1]

Answer:

1. D. Teorema.

2. A. Axioma.

Step-by-step explanation:

En matemáticas, un conjunto de proposiciones que deben estar respaldadas por una prueba adecuada basada en el razonamiento se denomina teorema. Se puede demostrar plenamente que todos los teoremas matemáticos son verdaderos mediante el razonamiento.

Sin embargo, un axión es evidente por sí mismo y no necesita ser probado. Es un hecho ya establecido.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Supervisor: "You did a great job last month. You made $75.00 an hour with your commission pay.” Employee: "This month I want to
    13·1 answer
  • What is the density of a material that has a mass of 2,500 grams and volume of 500 cubic centimeter, in grams per cubic centimet
    11·1 answer
  • There are 8 different types of chips at Subway How many different ways can you choose 2 of them?
    9·1 answer
  • Margaret owns (5/6) of a section of land. She planted corn on (1/4) of her land. What fraction of the entire section is planted
    13·1 answer
  • HELP ME PLEASE I NEED TO PASS THIS TEST
    9·1 answer
  • Find the product and simplify.<br> (k⁵) (7k)
    5·1 answer
  • A toll bridge charges $4 for a car and $6 for a truck. One day 200 of these vehicles crossed the bridge and paid a total of $860
    6·1 answer
  • Add. 34.700 + 98.428 98.775 132.435 132.980 133.128
    12·2 answers
  • When you’re driving and your instructor tells you to do a shoulder check, do you look directly to the right and left or behind y
    5·1 answer
  • Permutations and Combinations:
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!