The answer is potential energy...
Hope this helped :)
Answer:
<em>Chemistry deals with matter, and there is a tremendous variety of matter in the universe. The behavior of matter depends on the type of elements that are present and on the structure of those elements—how they are connected to make a molecule. In this exercise, you will evaluate some representative models to develop the rules used to classify a compound, to predict the formula of a compound, and to name the compound. This exercise is just the beginning of the work needed to be done to master the rules of writing formulas and nomenclature. Your textbook has tables of the names and formulas of common cations and anions, and discusses the rules of nomenclature in detail. You will need to spend some time with this material, as the formal rules of nomenclature may not be presented in lecture, although they will certainly be used in discussions of Lewis structures and reaction chemistry.</em>
Explanation:
<em>In a covalent compound, valence electrons are shared between the two atoms in the bond. These can be evenly shared (covalent bond) or unevenly shared (polar covalent bond). In an ionic bond, electrons are localized to one of the atoms (giving it an overall negative charge), while the other atom has an overall positive charge. The difference in electronegativity between the two atoms in the bond can help predict whether the bond is likely to be ionic, covalent, or polar covalent, as can the type of atoms involved (metals or non-metals). A bond with two identical atoms is always pure covalent, while a covalent bond with two different atoms is likely to be polar covalent.</em>
One, it's weather connects to science.
The more carbon dioxide can be related.
Answer:
Initial temperature, T1 = 99.4 Kelvin
Explanation:
<u>Given the following data;</u>
- Initial volume, V1 = 65.8 Litres
- Final temperature, T2 = 200 Kelvin
- Final volume, V2 = 132.4 Litres
To find the initial temperature (T1), we would use Charles' law;
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles' law is given by the formula;


Making T1 as the subject formula, we have;

Substituting the values into the formula, we have;


<em>Initial temperature, T1 = 99.4 Kelvin</em>
Answer:
3.98g
Explanation:
Given parameters:
Number of molecules = 1.2 x 10²⁴ molecules
Unknown:
Mass of H₂ = ?
Solution:
To find the mass of this molecule, we use the expression below:
Mass = number of moles x molar mass
Molar mass of H₂ = 2(1) = 2g/mol
6.02 x 10²³ molecules are contained in 1 mole of a substance
So; 1.2 x 10²⁴ molecules will have
= 1.99 moles of H₂
Mass of H₂ = 1.99 x 2 = 3.98g