The molecular formula of HgCl (m = 5 472.1 g/mol) is Hg2Cl4.
The molecular formula is an expression that defines the number of atoms of each element in one molecule of a compound. It shows the actual number of each atom in a molecule.
<h3>Molecular formula: What is it?</h3>
A chemical formula is a way to communicate information in chemistry about the proportions of atoms that make up a specific chemical compound or molecule. Chemical element symbols, numbers, and occasionally other symbols like parentheses, dashes, brackets, commas, and plus and minus signs are used to represent the chemical elements.
A molecule's molecular formula reveals which atoms and how many of each kind are included within it. No subscript is used if there is just one atom of a certain kind. A subscript is added to the symbol for an atom if it contains two or more of a certain type of atom.
To learn more about molecular formula visit:
brainly.com/question/14425592
#SPJ4
Answer:
D
Explanation:
Hopefully this helps you!
4
N
a
+
O
2
→
2
N
a
2
O
.
By the stoichiometry of this reaction if 5 mol natrium react, then 2.5 mol
N
a
2
O
should result.
Explanation:
The molecular mass of natrium oxide is
61.98
g
⋅
m
o
l
−
1
. If
5
m
o
l
natrium react, then
5
2
m
o
l
×
61.98
g
⋅
m
o
l
−
1
=
154.95
g
natrium oxide should result.
So what have I done here? First, I had a balanced chemical equation (this is the important step; is it balanced?). Then I used the stoichiometry to get the molar quantity of product, and converted this molar quantity to mass. If this is not clear, I am willing to have another go
Answer:
619°C
Explanation:
Given data:
Initial volume of gas = 736 mL
Initial temperature = 15.0°C
Final volume of gas = 2.28 L
Final temperature = ?
Solution:
Initial volume of gas = 736 mL (736mL× 1L/1000 mL = 0.736 L)
Initial temperature = 15.0°C (15+273 = 288 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 2.28 L × 288 K / 0.736 L
T₂ = 656.6 L.K / 0.736 L
T₂ = 892.2 K
K to °C:
892.2 - 273.15 = 619°C