1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
Answer:
3 + 1(3) +3 (the dollar amounts)
3+3+3
9
0.5 + 0.1 +0.1 +0.1 +0.5 (the cents)
1.3
9 +1.3 = 10.30 worth of groceries using front end estimation
There is more than one answer, but one could be:
1024, 2.
I created this using a graphing calculator website called Desmos! You can use this to further explore slopes and lines and graphing in general :)
This equation is telling you to subtract the value of f(x) from the value of g(x).
f(x)= x + 2
g(x) = 3x + 5
so x + 2 - 3x -5 = -2x-3