1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
3 years ago
10

Please help please please ASAP please please help please ASAP please

Mathematics
1 answer:
IgorC [24]3 years ago
8 0

Answer:

68

Step-by-step explanation:

all the explanation is in the photo

You might be interested in
Plz plz, help I don't understand 24 points !!! Will mark brainiest for correct answers only quick!!!
olya-2409 [2.1K]
The triangle is kinda square so multiply and you should get 24
6 0
2 years ago
Write the Riemann sum to find the area under the graph of the function f(x) = x4 from x = 5 to x = 7
galina1969 [7]

Answer:

x = 20

Step-by-step explanation:


7 0
3 years ago
The product of 5 and <img src="https://tex.z-dn.net/?f=%5Cfrac%7B7%7D%7B8%7D" id="TexFormula1" title="\frac{7}{8}" alt="\frac{7}
amm1812

Answer:

A. Less than 5

Step-by-step explanation:

5/1 x 7/8 =

35/8 =

4 3/8

5 0
3 years ago
Five more than the product of 10 some number
bogdanovich [222]
The answer is 10x-5   hope this helps 
8 0
3 years ago
You are given the sample mean and the population standard deviation. Use this information to construct the​ 90% and​ 95% confide
salantis [7]

Answer:

With​ 90% confidence, it can be said that the population mean price lies in the first interval. With​ 95% confidence, it can be said that the population mean price lies in the second interval. The​ 95% confidence interval is wider than the​ 90%.

Step-by-step explanation:

We are given that a random sample of 60 home theater systems has a mean price of​$131.00. Assume the population standard deviation is​$18.80.

  • Firstly, the pivotal quantity for 90% confidence interval for the  population mean is given by;

                            P.Q. = \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \bar X = sample mean price = $131

            \sigma = population standard deviation = $18.80

            n = sample of home theater = 60

            \mu = population mean

<em>Here for constructing 90% confidence interval we have used One-sample z test statistics as we know about the population standard deviation.</em>

<u>So, 90% confidence interval for the population mean, </u>\mu<u> is ;</u>

P(-1.645 < N(0,1) < 1.645) = 0.90  {As the critical value of z at 5% level

                                                   of significance are -1.645 & 1.645}  

P(-1.645 < \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } < 1.645) = 0.90

P( -1.645 \times {\frac{\sigma}{\sqrt{n} } } < {\bar X-\mu} < 1.645 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.90

P( \bar X-1.645 \times {\frac{\sigma}{\sqrt{n} } } < \mu < \bar X+1.645 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.90

<u>90% confidence interval for</u> \mu = [ \bar X-1.645 \times {\frac{\sigma}{\sqrt{n} } } , \bar X+1.645 \times {\frac{\sigma}{\sqrt{n} } } ]

                                                  = [131-1.645 \times {\frac{18.8}{\sqrt{60} } } , 131+1.645 \times {\frac{18.8}{\sqrt{60} } } ]

                                                  = [127.01 , 134.99]

Therefore, 90% confidence interval for the population mean is [127.01 , 134.99].

  • Now, the pivotal quantity for 95% confidence interval for the  population mean is given by;

                            P.Q. = \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \bar X = sample mean price = $131

            \sigma = population standard deviation = $18.80

            n = sample of home theater = 60

            \mu = population mean

<em>Here for constructing 95% confidence interval we have used One-sample z test statistics as we know about the population standard deviation.</em>

<u>So, 95% confidence interval for the population mean, </u>\mu<u> is ;</u>

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                   of significance are -1.96 & 1.96}  

P(-1.96 < \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } < 1.96) = 0.95

P( -1.96 \times {\frac{\sigma}{\sqrt{n} } } < {\bar X-\mu} < 1.96 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.95

P( \bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } } < \mu < \bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.95

<u>95% confidence interval for</u> \mu = [ \bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } } , \bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } } ]

                                                  = [131-1.96 \times {\frac{18.8}{\sqrt{60} } } , 131+1.96 \times {\frac{18.8}{\sqrt{60} } } ]

                                                  = [126.24 , 135.76]

Therefore, 95% confidence interval for the population mean is [126.24 , 135.76].

Now, with​ 90% confidence, it can be said that the population mean price lies in the first interval. With​ 95% confidence, it can be said that the population mean price lies in the second interval. The ​95% confidence interval is wider than the​ 90%.

7 0
3 years ago
Other questions:
  • Subtract -5x^2-9x+8−5x <br> 2<br> −9x+8 from -6x^2+5−6x <br> 2<br> +5.
    12·1 answer
  • 20 is what percent of 52? plz help!
    8·2 answers
  • I need the answer ASAP!!
    13·2 answers
  • Find the derivative of the function y = / - 5 - 3x.<br><br> dy/dx =
    6·2 answers
  • Chanda is planning to visit universities over the summer to help decide where she
    9·1 answer
  • 2x-1+3x=0 5x-1=0 how can we get equation b from a
    11·1 answer
  • Leonardo and Asha are solving the equation (256−247)(4x−19)=5x+14 separately. The results of their first steps are shown below.
    15·1 answer
  • Graph a line that contains the point (−6,1) and has a slope of 5
    15·1 answer
  • A survey of 110 students in an institution shows that 85 students speak Hausa and 25 students Igbo, while only 9 students speak
    6·1 answer
  • Pleeeeeeeeeas help rn
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!