Answer:
4. Supervised learning.
Explanation:
Supervised and Unsupervised learning are both learning approaches in machine learning. In other words, they are sub-branches in machine learning.
In supervised learning, an algorithm(a function) is used to map input(s) to output(s). The aim of supervised learning is to predict output variables for given input data using a mapping function. When an input is given, predictions can be made to get the output.
Unsupervised learning on the other hand is suitable when no output variables are needed. The only data needed are the inputs. In this type of learning, the system just keeps learning more about the inputs.
Special applications of supervised learning are in image recognition, speech recognition, financial analysis, neural networking, forecasting and a whole lot more.
Application of unsupervised learning is in pre-processing of data during exploratory analysis.
<em>Hope this helps!</em>
When you clicked on the ribbon tab in word 2016, you'd be brought to the home tab, where all of the basic controls are displaced for you to see.
Hope I could help! :)
The European plug takes up 220 volts while the American one takes 110 volts.