16. 5x^3 y^-5 • 4xy^3
20x^4y^-2
20x^4 • 1/y^2
=20x^4/y^2
17. -2b^3c • 4b^2c^2
= -8b^5c^3
18. a^3n^7 / an^4 (a^3 minus a = a^2 same as n^7 minus n^4 = n^3)
=a^2n^3
19. -yz^5 / y^2z^3
= -z^2/y
20. -7x^5y^5z^4 / 21x^7y^5z^2 (divide -7 to 21 and minus xyz)
= -z / 3x^2
21. 9a^7b^5x^5 / 18a^5b^9c^3
=a^2c^2 / 2b^4
22. (n^5)^4
n ^5 x 4
=n^20
23. (z^3)^6
z ^3 x 6
=z^18
Complete question :
The diameter of the ferris Given is 63 feets
Answer:
3165 feets
Step-by-step explanation:
Given that :
Diameter of ferris = 63 feets
Recall :
Circumference of a circle = 2 * pi * Radius
Or
Circumference = pi * d
Hence,
Circumference of wheel = 3.14 * 63 = 197.82 feets
Distance traveled during one ride :
Circumference of wheel * number of revolutions
197.82 * 16 = 3165.12
= 3165 feets (nearest whole number)
Refer to the diagram shown below.
The volume of the container is 10 m³, therefore
x*2x*h = 10
2x²h = 10
h = 5/x² (1)
The base area is 2x² m².
The cost is $10 per m², therefore the cost of the base is
(2x²)*($10) = 20x²
The area of the sides is
2hx + 2(2xh) = 6hx = 6x*(5/x²) = 30/x m²
The cost is $6 per m², therefore the cost of the sides is
(30/x)*($6) = 180/x
The total cost is
C = 20x² + 180/x
The minimum cost is determined by C' = 0.
That is,
40x - 180/x² = 0
x³ = 180/40 = 4.5
x = 1.651
The second derivative of C is
C'' = 40 + 360/x³
C''(1.651) = 120 >0, so x = 1.651 m yields the minimum cost.
The total cost is
C = 20(1.651)² + 180/1.651 = $163.54
Answer: $163.54
Answer:
Step-by-step explanation:

Answer:
a^3-125
Step-by-step explanation:
(a-5)(a^2+5a+25)
a^3+5a^2+25a-5a^2-25a-125
a^3+5a^2-5a^2+25a-25a-125
a^3-125