One of the major effects of heat transfer is temperature change: heating increases the temperature while cooling decreases it. We assume that there is no phase change and that no work is done on or by the system. Experiments show that the transferred heat depends on three factors—the change in temperature, the mass of the system, and the substance and phase of the substance.
Figure a shows a copper-colored cylinder of mass m and temperature change delta T. The heat Q, shown as a wavy rightward horizontal arrow, is transferred to the cylinder from the left. To the right of this image is a similar image, except that the heat transferred Q prime is twice the heat Q. The temperature change of this second cylinder, which is also labeled m, is two delta T. This cylinder is surrounded by small black wavy lines radiating outward. Figure b shows the same two cylinders as in Figure a. The left cylinder is labeled m and delta T and has a wavy heat arrow pointing at it from the left that is labeled Q. The right cylinder is labeled two m and delta T and has a wavy heat arrow pointing to it from the left labeled Q prime equals two Q. Figure c shows the same copper cylinder of mass m and with temperature change delta T, with heat Q being transferred to it. To the right of this cylinder, Q prime equals ten point eight times Q is being transferred to another cylinder filled with water whose mass and change in temperature are the same as that of the copper cylinder.
Answer:
a) 0.1832 A
b) 11.91 Volts
c) 2.18 Watt , 0.0168 Watt
Explanation:
(a)
R = external resistor connected to the terminals of the battery = 65 Ω
E = Emf of the battery = 12.0 Volts
r = internal resistance of the battery = 0.5 Ω
i = current flowing in the circuit
Using ohm's law
E = i (R + r)
12 = i (65 + 0.5)
i = 0.1832 A
(b)
Terminal voltage is given as
= i R
= (0.1832) (65)
= 11.91 Volts
(c)
Power dissipated in the resister R is given as
= i²R
= (0.1832)²(65)
= 2.18 Watt
Power dissipated in the internal resistance is given as
= i²r
= (0.1832)²(0.5)
= 0.0168 Watt
<span>high pressure produced by the clouds because its the most likely!!!!!!!!!!</span>
Answer:
<em>P = 66.67 W</em>
Explanation:
<u>Joule Heating</u>
It's the process by which the electric current passing through a conductor produces heat.
Also known as Joule's first law or the Joule–Lenz law, states that the power of heating generated by an electrical conductor (P) is proportional to the product of its resistance (R) and the square of the current (I).
It can be described by the equation that follows:

Also, we can calculate the voltage V with the formula of Ohm's law:

Combining both equations, power can be related to the voltage:

Given the power and the voltage, the resistance can be calculated by solving for R:

There are two bulbs marked P=200W V=250V and P=100 W V=250.
The first bulb has a resistance of:


The first bulb has a resistance of:


When connected in series, the total resistance is


The total power consumed when connecting them to a V=250 V supply is:

P = 66.67 W
Answer:
3.At equilibrium, its instantaneous velocity is at maximum
Explanation:
The motion of a mass on the end of a spring is a simple harmonic motion. In a simple harmonic motion, the total mechanical energy of the system is constant, and it is sum of the elastic potential energy (U) and the kinetic energy of the mass (K):

where
k is the spring constant
x is the displacement of the spring from equilibrium
m is the mass
v is the speed
As we see from the formula, since the total energy E is constant, when the displacement (x) increases, the speed (v) increases, and viceversa. Therefore, when the mass is at its equilibrium position (which corresponds to x=0), the velocity of the mass will be maximum.