1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sunny_sXe [5.5K]
3 years ago
6

A 65.0-Ω resistor is connected to the terminals of a battery whose emf is 12.0 V and whose internal resistance is 0.5 Ω. Calcula

te (a) the current in the circuit, (b) the terminal voltage of the battery, Vab, and (c) the power dissipated in the resistor R and in the battery’s internal resistance r.
Physics
1 answer:
Luda [366]3 years ago
5 0

Answer:

a) 0.1832 A

b) 11.91 Volts

c) 2.18 Watt , 0.0168 Watt

Explanation:

(a)

R = external resistor connected to the terminals of the battery = 65 Ω

E = Emf of the battery = 12.0 Volts

r = internal resistance of the battery = 0.5 Ω

i = current flowing in the circuit

Using ohm's law

E = i (R + r)

12 = i (65 + 0.5)

i = 0.1832 A

(b)

Terminal voltage is given as

V_{ab} = i R

V_{ab} = (0.1832) (65)

V_{ab} = 11.91 Volts

(c)

Power dissipated in the resister R is given as

P_{R} = i²R

P_{R} = (0.1832)²(65)

P_{R} = 2.18 Watt

Power dissipated in the internal resistance is given as

P_{r} = i²r

P_{r} = (0.1832)²(0.5)

P_{r} = 0.0168 Watt

You might be interested in
Which is located furthest from our sun?
eimsori [14]
Neptune is the farthest front the sun.
4 0
2 years ago
Read 2 more answers
Which type of radio waves have the highest frequency and are used in radar detection? microwaves x-rays waves infrared waves gam
goldfiish [28.3K]

Answer: Microwaves

Explanation:

RADAR stands for radio detection and ranging.  Radio waves range from 300 GHz to 30 Hz. Modern radar uses higher frequency of waves for detection. These waves are microwaves (300 MHz-300 GHz). Microwaves are types of radio waves and are used in the radar detection.

The electromagnetic wave which has highest frequency is gamma wave but it is not used for radar detection.

Hence, the correct answer is microwaves are the type pf radio waves which have the highest frequency and are used in radar detection.

5 0
3 years ago
Read 2 more answers
If the speed of the wave is 12 m/s and the frequency is 2.3 Hz, what is the <br> wavelength?
-BARSIC- [3]

Answer: 5.2

Explanation: 12/ 2.3

3 0
2 years ago
Egocentrism exists during which of Piaget's stages?
Goryan [66]

Answeri believe it is the first one but not sure

Explanation:

7 0
3 years ago
A tugboat tows a ship with a constant force of magnitude F1. The increase in the ship's speed during a 10 s interval is 3 km/h.
Amanda [17]

Answer:

F_{1}=\frac{1}{5}F_{2}  or  F_{2}=5F_{1}

In other words, F_{1} is one fifth of F_{2} or F_{2} is five times as big as F_{1}

Explanation:

In order to solve this problem we must start by sketching the situation (refer to the attached picture).

When the ship is pulled only by force 1, it will change its speed by 3km/hr in 10 seconds. So in order to use these values we need to either turn the km/hr in km/s or turn the seconds to hours. Let's turn the seconds to hours:

10s*\frac{1hr}{3600s}=\frac{1}{360} hr

so we can now use the acceleration formula to find the acceleration of the boat so we get:

a=\frac{\Delta v}{\Delta t}

which will give us an accceleration of:

a=\frac{3km/hr}{\frac{1}{360}hr}=1080km/hr^{2}

once we got the acceleration we can for sure say taht:

F_{1}=ma=m*1080\frac{km}{hr^{2}}

Now, if we take a look at the second drawing we can see that the resultant force applied to the boat is found by adding the two forces, force one and force two, so we get:

F_{1}+F_{2}=ma

in this case the acceleration changes because the change in velocity is of 18km/hr in the same 10 seconds, so we get that:

a=\frac{\Delta v}{\Delta t}

a=\frac{18km/hr}{\frac{1}{360}hr}=6480km/hr^{2}

so we can say that:

F_{1}+F_{2}=m*6480km/hr^{2}

we can substitute the first force into this equation so we get:

m*1080km/hr^{2}+F_{2}=m*6480km/hr^{2}

and solve for the second force, so we get:

F_{2}=m*6480km/hr^{2}-m*1080km/hr^{2}

which yields:

F_{2}=m*5400km/hr^{2}

Now we can compare theh two forces, force 1 and force 2 by dividing them:

\frac{F_{1}}{F_{2}}=\frac{m*1080km/hr^{2}}{m*5400km/hr^{2}}

which yields:

\frac{F_{1}}{F_{2}}=\frac{1}{5}

when solving for the first force we get:

F_{1}=\frac{1}{5}F_{2}

which tells us that the second force is one fifth of the first force.

and when solving for the second force we get that:

F_{2}=5F_{1}

which means that the second force is 5 times as big as the first force.

8 0
3 years ago
Other questions:
  • What is a resource that is constantly being replenish
    12·1 answer
  • A 12,000-N car is raised using a hydraulic lift, which consists of a U-tube with arms of unequal areas, filled with oil with a d
    13·1 answer
  • If earth began to shrink, but its mass remained the same, what would happen to the value of g on earth's surface?
    14·1 answer
  • A small amber bead with a mass of 12.6 g and a charge of −0.646 µC is suspended in equilibrium above the center of a large, hori
    10·1 answer
  • It's possible for a determined group of people to pull an aircraft. Drag is negligible at low speeds, and the only force impedin
    6·1 answer
  • A 5kg fish swimming at 1 m/s swallows a 1 kg fish at rest. What is the final momentum of the big fish with the small fish in its
    9·1 answer
  • HELP ME PLEASEEEEEEEEEEEEEE
    8·2 answers
  • 1. Find the resultant due to the action of three forces if they are F1, 100 N, 60º above the x axis; F2, 200 N, 140º above the x
    11·1 answer
  • 50 POINTS!! BRAINLEST
    13·2 answers
  • A graph titled velocity versus time has horizontal axis time (seconds) and vertical axis velocity (meters per second). A line ru
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!