Answer:
The third one
Step-by-step explanation:
y=>x+1
y=<x-1
removing y
x-1 => x+1
removing x
we have no solution
Answer:
There are ways for quickly multiply out a binomial that's being raised by an exponent. Like
(a + b)0 = 1
(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2
(a + b)3 = (a + b)(a + b)2 = (a + b)(a2 + 2ab + b2) = a3 + 3a2b + 3ab2 + b3
and so on and so on
but there was this mathematician named Blaise Pascal and he found a numerical pattern, called Pascal's Triangle, for quickly expanding a binomial like the ones from earlier. It looks like this
1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
Pascal's Triangle gives us the coefficients for an expanded binomial of the form (a + b)n, where n is the row of the triangle.
Hope this helps!
Answer: 2
Step-by-step explanation:
m = y2 - y1 / x2- x1
where slope is m,
so in this case it would be
m= 1-(-1) / 3-2
m=2/1
m=2
Note that you can do it either way
For a binomial experiment in which success is defined to be a particular quality or attribute that interests us, with n=36 and p as 0.23, we can approximate p hat by a normal distribution.
Since n=36 , p=0.23 , thus q= 1-p = 1-0.23=0.77
therefore,
n*p= 36*0.23 =8.28>5
n*q = 36*0.77=27.22>5
and therefore, p hat can be approximated by a normal random variable, because n*p>5 and n*q>5.
The question is incomplete, a possible complete question is:
Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us.
Suppose n = 36 and p = 0.23. Can we approximate p hat by a normal distribution? Why? (Use 2 decimal places.)
n*p = ?
n*q = ?
Learn to know more about binomial experiments at
brainly.com/question/1580153
#SPJ4