Step-by-step explanation:
<em>x</em><em> </em><em>=</em><em> </em><em>5</em><em>1</em><em>.</em><em>5</em>
<em>I'm </em><em>am </em><em>not </em><em>sure </em><em>about</em><em> </em><em>it </em><em>since </em><em>in </em><em>the</em><em> </em><em>case </em><em>it </em><em>is </em><em>not </em><em>g</em><em>iven </em><em>that </em><em>how </em><em>much </em><em>miles </em><em>he </em><em>walk </em><em>in </em><em>total </em><em>so.</em>
<em>I </em><em>just </em><em>added </em><em>the </em><em>no.</em><em> </em><em>of </em><em>miles </em><em>he </em><em>walk </em><em>in </em><em>part </em><em>A </em><em>and </em><em>B </em><em>so </em><em>I </em><em>got </em><em>x </em><em>=</em><em> </em><em>5</em><em>1</em><em>.</em><em>5</em>
<em><u>hope </u></em><em><u>this </u></em><em><u>answer </u></em><em><u>helps </u></em><em><u>you </u></em><em><u>dear.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care </u></em><em><u>and </u></em><em><u>stay </u></em><em><u>safe!</u></em>
64 and 28 have a GCF of 4, since 64 = 4 x 16, 28 = 4 x 7, and 7 and 16 have no factors other than 1 in common. Knowing that, we can rewrite 64 + 28 as
4 x 16 + 4 x 7
and then use the distributive property to rewrite it again as
4 x (16 + 7)
Answer:
A.16b^4/81
step-by-step explanation:
(2b/3)^4
= (2b)^4/3^4
= (2^4×b^4)/3^4
=16b^4/81
(as 16 and 81 cant simplify each other)
I'm going to assume that you're discussing the linear function y = mx + b. If that's not it, please provide more information on the function you're studying.
y = mx + b has a graph that is the straight line through (0,b) with slope m.
y = m(x-5) + b has a graph which is parallel to the previous graph, but intersects the x-axis at a different point.
Examples: start with y = mx + b
Suppose we have y = 3x + 2 to work with
The graph intersects the y-axis at (0,2). It intersects the x-axis where y=0=3x+2, or at x = -2/3 => (-2/3, 0)
Now modify y = 3x + 2 by replacing "x" with "x-5." the graph of this "new" function f(x) = 3(x-5) + 2 is parallel to the original graph, but lies 5 units to the right of the original graph. Both lines have slope 3.
In this case, if x increases by 4 (as your problem states), y will increase by 3(4), or 12, units.
If we go back to y = m(x-5), we see that the graph of this function intersects the x-axis at x=5, and this graph has the (unknown) slope m.
If x increases by 4, y increases by (m)(4), or 4m.