The side length of the square base is 18 inches and the height of the pyramid is 9 inches.
Step-by-step explanation:
Step 1:
The volume of a square pyramid is calculated by multiplying the square of the base edge with the height of the pyramid and
.
The volume of a square pyramid, 
Step 2:
From the given diagram, the base edge is the length of the four base edges which is x inches in this pyramid. a = x inches.
The height of the pyramid is from the base to the top, h =
inches .
The volume of a square pyramid, 
Substituting the known values, we get

![x^{3} = 6(972) = 5,832. x = \sqrt[3]{5,832} = 18.](https://tex.z-dn.net/?f=x%5E%7B3%7D%20%3D%206%28972%29%20%3D%205%2C832.%20x%20%3D%20%5Csqrt%5B3%5D%7B5%2C832%7D%20%3D%2018.)
So x is 18 inches long.
The side length
inches.
The height of the pyramid
inches.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u>Step 2: Simplify</u>
- [Fraction] Factor numerator:

- [Fraction] Reduce:

Answer:
$31.18
Step-by-step explanation:
810.68/26=31.18
Answer:
1) 275
2)60
Step-by-step explanation:
1) 55 x 5 =275
2) 12 x 5 = 60
<em><u>Hope it helps!</u></em>
Check the picture below, so the hyperbola looks more or less like so, so let's find the length of the conjugate axis, or namely let's find the "b" component.
![\textit{hyperbolas, horizontal traverse axis } \\\\ \cfrac{(x- h)^2}{ a^2}-\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Ctextit%7Bhyperbolas%2C%20horizontal%20traverse%20axis%20%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B%28x-%20h%29%5E2%7D%7B%20a%5E2%7D-%5Ccfrac%7B%28y-%20k%29%5E2%7D%7B%20b%5E2%7D%3D1%20%5Cqquad%20%5Cbegin%7Bcases%7D%20center%5C%20%28%20h%2C%20k%29%5C%5C%20vertices%5C%20%28%20h%5Cpm%20a%2C%20k%29%5C%5C%20c%3D%5Ctextit%7Bdistance%20from%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bcenter%20to%20foci%7D%5C%5C%20%5Cqquad%20%5Csqrt%7B%20a%20%5E2%20%2B%20b%20%5E2%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
