Answer:
29
Step-by-step explanation:
As it is a list of prime number, the sequence continues with 29 being the next prime number after 23.
Answer:
Following are the responses to the given question:
Step-by-step explanation:

Answer:
A) AAS; B) LA; C) ASA
Step-by-step explanation:
AAS is the Angle-Angle-Side congruence statement. It says that if two angles and a non-included side of one triangle are congruent to the corresponding two angles and non-included side of a second triangle, then the triangles are congruent. In these triangles, ∠E≅∠K, ∠F≅∠L, and DE≅JK. These are two angles and a non-included side; this is AAS.
LA is the leg-acute theorem. It states that if a leg and acute angle of one triangle is congruent to the corresponding leg and acute angle of another triangle, then the triangles are congruent.
The leg we have congruent from each triangle is DE and JK. We also have ∠E≅∠K and ∠F≅∠L, both pairs of which are acute. This is the LA theorem.
ASA is the Angle-Side-Angle congruence statement. It says that if two angles and an included side of one triangle are congruent to the corresponding two angles and included side of another triangle, then the triangles are congruent.
We have that ∠D≅∠J, DE≅JK and ∠E≅∠K. This gives us two angles and an included side, or ASA.
Answer:
I think it's 56 students have a gadgets
Answer:
Δ AXY is not inscribed in circle with center A.
Step-by-step explanation:
Given: A circle with center A
To find: Is Δ AXY inscribed in circle or not
A figure 1 is inscribed in another figure 2 if all vertex of figure 1 is on the boundary of figure 2.
Here figure 1 is Δ AXY with vertices A , X and Y
And figure 2 is Circle.
Clearly from figure, Vertices A , X and Y are not on the arc/boundary of circle.
Therefore, Δ AXY is not inscribed in circle with center A.