Answer:
m∠BCE = 28° and m∠ECD = 134°
Step-by-step explanation:
* Lets explain how to solve the problem
- The figure has three angles: ∠BCE , ∠ECD , and ∠BCD
- m∠ECD is six less than five times m∠BCE
- That means when we multiply measure of angle BCE by five and
then subtract six from this product the answer will be the measure
of angle ECD
∴ m∠ECD = 5 m∠BCE - 6 ⇒ (1)
∵ m∠BCD = m∠BCE + m∠ECD
∵ m∠BCD = 162°
∴ m∠BCE + m∠ECD = 162 ⇒ (2)
- Substitute equation (1) in equation (2) to replace angle ECD by
angle BCE
∴ m∠BCE + (5 m∠BCE - 6) = 162
- Add the like terms
∴ 6 m∠BCE - 6 = 162
- Add 6 to both sides
∴ 6 m∠BCE = 168
- Divide both sides by 6
∴ m∠BCE = 28°
- Substitute the measure of angle BCE in equation (1) to find the
measure of angle ECD
∵ m∠ECD = 5 m∠BCE - 6
∵ m∠BCE = 28°
∴ m∠ECD = 5(28) - 6 = 140 - 6 = 134°
* m∠BCE = 28° and m∠ECD = 134°
Answer:
-3/4
Step-by-step explanation:
-5/4 + 2/4 = -3/4
Hope this helps :)
Answer :Plotting the points into the coordinate plane gives us an observation that this quadrilateral with vertices d(0,0), i(5,5) n(8,4) g(7,1) is a KITE, as shown in figure a.
Step-by-step explanation:
Considering the quadrilateral with vertices
d(0,0)
i(5,5)
n(8,4)
g(7,1)
Plotting the points into the coordinate plane gives us an observation that this quadrilateral with vertices d(0,0), i(5,5) n(8,4) g(7,1) is a KITE, as shown in figure a.
From the figure a, it is clear that the quadrilateral has
Two pairs of sides
Each pair having two equal-length sides which are adjacent
The angles being equal where the two pairs meet
Diagonals as shown in dashed lines cross at right angles, and one of the diagonals does bisect the other - cuts equally in half
Please check the attached figure a.
Answer:
-4
Step-by-step explanation:
-*- =+
Alrighty
remember

means

and

and

for all real values of x
so

means

means

which simplifies to
1=x²+4x-5
minus 1 both sides
0=x²+4x-6
use quadratic formula or complete the square

and

2 solutions