Answer:
- <em><u>Step 2 (the slow step).</u></em>
Explanation:
The rate-determining step is always the slow step of a mechanism.
That is so, because it is the slow step which limits the reaction.
Imaging that for assembling a toy you have process of three steps:
- 1. order ten pieces, which you can do in 1 minute: meaning that you can order order the pieces for 60/1 = 60 toys in 1 hour.
- 2. glue the pieces and hold the toy until the glue hardens, which takes 1 hour: meaning finishingh 1 toy in 1 hour.
- 3. pack the toy, which takes 2 minutes: meaning that you can pack 60/2 = 30 toys in one hour.
The time to glue and hold one toy until the glue hardens determines that you can assemble 1 toy in 1 hour and not 60 toys or 30 toys.
Thus, the step that determines the rate at which the reaction happens is the slowest step: step 2.
Answer:
1200 J/K
Explanation:
The formula for the entropy associated with a reversible phase change is

1. Calculate q
For a reversible phase change like melting,

2. Calculate ΔS

Answer:
The mass (M) and speed of an object (v)
Explanation:
This law states that the volume and temperature of a gas have a direct relationship: As temperature increases, volume increases, when pressure is held constant. Heating a gas increases the kinetic energy of the particles, causing the gas to expand.
During the experiment, scientists noted that several of the reaction beakers became hot to the touch. All of the following reactions could cause this result except endothermic and positive ∆H experiments.
<u>Explanation:</u>
If the beakers are becoming hot during experimentation, then that means the energy is being released from the reactants during this experiment. As the energy is being released that enthalpy change will also be negative as the enthalpy change is calculated as the difference of enthalpy of reactants from products.
So in these cases, heat is released making the beakers hot. So for the exceptional case, the experiment should be endothermic in nature and positive enthalpy change should be there in the experiment. Such that the heat will not be released leading to no heating of beakers.