Answer:
I think the answer is 3:5
Answer:
k=4
Step-by-step explanation:
-The constant of proportionality is defined as the ratio between two directly proportional variables.
-Given that B=4f
#The constant of proportionality is calculated as:
- the equation can be written in the form y=kx,
where y varies directly with x and k is the constant of variation:

Hence, B varies directly with f with a constant of proportionality k=4
Good luck with ur quiz I hope u pass
Answer:
1
Step-by-step explanation:
Because, The mode is the value that appears most often in a set of data values. If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value. In other words, it is the value that is most likely to be sampled.
Check the picture below.
so by graphing those two, we get that little section in gray as you see there, now, x = 6 is a vertical line, so we'll have to put the equations in y-terms and this is a washer, so we'll use the washer method.

the way I get the radii is by using the "area under the curve" way, namely, I use it to get R² once and again to get r² and using each time the axis of rotation as one of my functions, in this case the axis of rotation will be f(x), and to get R² will use the "farthest from the axis of rotation" radius, and for r² the "closest to the axis of rotation".

now, both lines if do an equation on where they meet or where one equals the other, we'd get the values for y = 0 and y = 1, not surprisingly in the picture.
![\displaystyle\pi \int_0^1\left( 3y-3y^2-\cfrac{y^2}{16}+\cfrac{y^4}{16} \right)dy\implies \pi \left( \left. \cfrac{3y^2}{2} \right]_0^1-\left. y^3\cfrac{}{} \right]_0^1-\left. \cfrac{y^3}{48}\right]_0^1+\left. \cfrac{y^5}{80} \right]_0^1 \right) \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \cfrac{59\pi }{120}~\hfill](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cpi%20%5Cint_0%5E1%5Cleft%28%203y-3y%5E2-%5Ccfrac%7By%5E2%7D%7B16%7D%2B%5Ccfrac%7By%5E4%7D%7B16%7D%20%5Cright%29dy%5Cimplies%20%5Cpi%20%5Cleft%28%20%5Cleft.%20%5Ccfrac%7B3y%5E2%7D%7B2%7D%20%5Cright%5D_0%5E1-%5Cleft.%20y%5E3%5Ccfrac%7B%7D%7B%7D%20%5Cright%5D_0%5E1-%5Cleft.%20%5Ccfrac%7By%5E3%7D%7B48%7D%5Cright%5D_0%5E1%2B%5Cleft.%20%5Ccfrac%7By%5E5%7D%7B80%7D%20%5Cright%5D_0%5E1%20%5Cright%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20%5Ccfrac%7B59%5Cpi%20%7D%7B120%7D~%5Chfill)