The quotient means division. So we have one part of the equation.
y/2 (sorry, the variable thing doesn't work)
Then we know there is an equal mark and the other equation would be 2y-8 because y is multiplied two times and it is subtracted by eight. And then it says it is equal to, so we hate the final equation: y/2=2y-8.
Thank you for the points! Hope I helped!
The expressions with radicals which are variables and numbers raised to a fractional indices are simplified as follows.
13. √(9·x) = 3·√x
14. √(4·y) = 2·√y
15. √(8·x²) = 2·x·√2
16. √(9·x²) = 3·x
17. √(3·x²) = x·√3
18. √(5·y²) = y·√5
19. √(13·x²) = x·√(13)
20. √(29·y²) = y·√(29)
21. √(64·y²) = 8·y
22. √(125·a²) = 5·a·√5
23. ∛(16) = 2·∛2
24. √(50·a²·b) = 5·a·√(2·b)
<h3>What are radicals expressions?</h3>
A radical expression is one that contains the radical (square root or nth root) sign, √.
13. √(9·x)
√(9·x) = √(3²·x) = 3·√x
14. √(4·y)
√(4·y) = √(2²·y) = 2·√y
15. √(8·x²)
√(8·x²) = √(4 × 2·x²) = √(2² × 2·x²)
√(2² × 2·x²) = √(2²·x² × 2) = 2·x·√2
16. √(9·x²)
√(9·x²) = √(3²·x²) = 3·x
17. √(3·x²)
18. √(5·y²)
√5 × √(y²) = √5 × y = y·√5
19. √(13·x²)
√(13·x²) = √(13) × √x² = √(13) × x = x·√(13)
20. √(29·y²)
√(29·y²) = √(29) × √(y²) = √(29) × y = y·√(29)
21. √(64·y²)
√(64·y²) = √(8²·y²) = √(8²) × √(y²) = 8 × y = 8·y
22. √(125·a²)
√(125·a²) = √(25 × 5 × a²) = √(25) × √5 × √(a²) = 5 × √5 × a
5 × √5 × a = 5·a·√5
23. ∛(16)
∛(16) = ∛(16) = ∛(8 × 2) = ∛(2³ × 2) = 2·∛2
24. √(50·a²·b)
√(50·a²·b) = √(25 × 2 × a² × b) = √(5² × 2 × a² × b) = √(5² × a² × 2 × b)
√((5² × a²) × 2 × b) = 5·a·√(2·b)
Learn more about simplifying expressions with radicals here:
brainly.com/question/13114751
#SPJ1
Step-by-step explanation:
3( x +1) = 5 (x - 2) + 7
3x + 3 = 5x - 10 + 7
5x - 3x = 3 + 10 - 7
2x = 13 - 7
2x = 6
Therefore x = 3
To solve this problem you can first set up an equation.
3m+m=24
<u>4</u>m=<u>24
</u>4 4
m=6
6 monkeys
24-6=18 lions