Solution:
Given :
.............(1)
where, B = aP = birth rate
D =
= death rate
Now initial population at t = 0, we have
= 220 ,
= 9 ,
= 15
Now equation (1) can be written as :
![$ \frac{dP}{dt}=P(a-bP)$](https://tex.z-dn.net/?f=%24%20%5Cfrac%7BdP%7D%7Bdt%7D%3DP%28a-bP%29%24)
.................(2)
Now this equation is similar to the logistic differential equation which is ,
![$\frac{dP}{dt}=kP(M-P)$](https://tex.z-dn.net/?f=%24%5Cfrac%7BdP%7D%7Bdt%7D%3DkP%28M-P%29%24)
where M = limiting population / carrying capacity
This gives us M = a/b
Now we can find the value of a and b at t=0 and substitute for M
and ![$b_0=\frac{D_0}{P_0^2}$](https://tex.z-dn.net/?f=%24b_0%3D%5Cfrac%7BD_0%7D%7BP_0%5E2%7D%24)
So, ![$M=\frac{B_0P_0}{D_0}$](https://tex.z-dn.net/?f=%24M%3D%5Cfrac%7BB_0P_0%7D%7BD_0%7D%24)
= ![$\frac{9 \times 220}{15}$](https://tex.z-dn.net/?f=%24%5Cfrac%7B9%20%5Ctimes%20220%7D%7B15%7D%24)
= 132
Now from equation (2), we get the constants
k = b = ![$\frac{D_0}{P_0^2} = \frac{15}{220^2}$](https://tex.z-dn.net/?f=%24%5Cfrac%7BD_0%7D%7BP_0%5E2%7D%20%3D%20%5Cfrac%7B15%7D%7B220%5E2%7D%24)
= ![$\frac{3}{9680}$](https://tex.z-dn.net/?f=%24%5Cfrac%7B3%7D%7B9680%7D%24)
The population P(t) from logistic equation is calculated by :
![$P(t)= \frac{MP_0}{P_0+(M-P_0)e^{-kMt}}$](https://tex.z-dn.net/?f=%24P%28t%29%3D%20%5Cfrac%7BMP_0%7D%7BP_0%2B%28M-P_0%29e%5E%7B-kMt%7D%7D%24)
![$P(t)= \frac{132 \times 220}{220+(132-220)e^{-\frac{3}{9680} \times132t}}$](https://tex.z-dn.net/?f=%24P%28t%29%3D%20%5Cfrac%7B132%20%5Ctimes%20220%7D%7B220%2B%28132-220%29e%5E%7B-%5Cfrac%7B3%7D%7B9680%7D%20%5Ctimes132t%7D%7D%24)
![$P(t)= \frac{29040}{220-88e^{-\frac{396}{9680} t}}$](https://tex.z-dn.net/?f=%24P%28t%29%3D%20%5Cfrac%7B29040%7D%7B220-88e%5E%7B-%5Cfrac%7B396%7D%7B9680%7D%20t%7D%7D%24)
As per question, P(t) = 110% of M
![$\frac{110}{100} \times 132= \frac{29040}{220-88e^{\frac{-396}{9680} t}}$](https://tex.z-dn.net/?f=%24%5Cfrac%7B110%7D%7B100%7D%20%5Ctimes%20132%3D%20%5Cfrac%7B29040%7D%7B220-88e%5E%7B%5Cfrac%7B-396%7D%7B9680%7D%20t%7D%7D%24)
![$ 220-88e^{\frac{-99}{2420} t}=200$](https://tex.z-dn.net/?f=%24%20220-88e%5E%7B%5Cfrac%7B-99%7D%7B2420%7D%20t%7D%3D200%24)
![$ e^{\frac{-99}{2420} t}=\frac{5}{22}$](https://tex.z-dn.net/?f=%24%20e%5E%7B%5Cfrac%7B-99%7D%7B2420%7D%20t%7D%3D%5Cfrac%7B5%7D%7B22%7D%24)
Now taking natural logs on both the sides we get
t = 36.216
Number of months = 36.216