We are choosing 2
2
r
shoes. How many ways are there to avoid a pair? The pairs represented in our sample can be chosen in (2)
(
n
2
r
)
ways. From each chosen pair, we can choose the left shoe or the right shoe. There are 22
2
2
r
ways to do this. So of the (22)
(
2
n
2
r
)
equally likely ways to choose 2
2
r
shoes, (2)22
(
n
2
r
)
2
2
r
are "favourable."
Another way: A perhaps more natural way to attack the problem is to imagine choosing the shoes one at a time. The probability that the second shoe chosen does not match the first is 2−22−1
2
n
−
2
2
n
−
1
. Given that this has happened, the probability the next shoe does not match either of the first two is 2−42−2
2
n
−
4
2
n
−
2
. Given that there is no match so far, the probability the next shoe does not match any of the first three is 2−62−3
2
n
−
6
2
n
−
3
. Continue. We get a product, which looks a little nicer if we start it with the term 22
2
n
2
n
. So an answer is
22⋅2−22−1⋅2−42−2⋅2−62−3⋯2−4+22−2+1.
2
n
2
n
⋅
2
n
−
2
2
n
−
1
⋅
2
n
−
4
2
n
−
2
⋅
2
n
−
6
2
n
−
3
⋯
2
n
−
4
r
+
2
2
n
−
2
r
+
1
.
This can be expressed more compactly in various ways.
Answer:
8x+4
Step-by-step explanation:
Answer:
x = 127°
Step-by-step explanation:
Let A, B and C be the three angles of a quadrilateral such that they are 55, 73, 105 respectively.
We know that, the sum of angles of a quadrilateral is equal to 360°. Let fourth angle be x.
55+73+105+x = 360
233+x=360
x = 360-233
x = 127°
So, the fourth angle is equal to 127°.
Answer:
There are 18 teachers in the auditorium.
Step-by-step explanation:
1/9 of 162
1/9 * 162 = 18.