<span>N(t) = 16t ; Distance north of spot at time t for the liner.
W(t) = 14(t-1); Distance west of spot at time t for the tanker.
d(t) = sqrt(N(t)^2 + W(t)^2) ; Distance between both ships at time t.
Let's create a function to express the distance north of the spot that the luxury liner is at time t. We will use the value t as representing "the number of hours since 2 p.m." Since the liner was there at exactly 2 p.m. and is traveling 16 kph, the function is
N(t) = 16t
Now let's create the same function for how far west the tanker is from the spot. Since the tanker was there at 3 p.m. (t = 1 by the definition above), the function is slightly more complicated, and is
W(t) = 14(t-1)
The distance between the 2 ships is easy. Just use the pythagorean theorem. So
d(t) = sqrt(N(t)^2 + W(t)^2)
If you want the function for d() to be expanded, just substitute the other functions, so
d(t) = sqrt((16t)^2 + (14(t-1))^2)
d(t) = sqrt(256t^2 + (14t-14)^2)
d(t) = sqrt(256t^2 + (196t^2 - 392t + 196) )
d(t) = sqrt(452t^2 - 392t + 196)</span>
Answer:
Donna will have to pay $12.60 for the roast
Step-by-step explanation:
I found this by doing 5.6 × 2.25 and that equals 12.6
pls mark me brainliest
Answer:
-3/2
Step-by-step explanation:
Count up three times and to the left twice. Let me know if you need help with other questions!
Answer:
k = 140°
Step-by-step explanation:
The sum of the interior angles of any triangle = 180°.
64° + 76° + x = 180°
x = 40°
40° + k = 180° because they are supplementary angles
k = 140°