Um do you ave any answer choices ? i would say <span>Pythagorean theorem.
thats my best guess </span>
Answer:
Step-by-step explanation:
use a calculator fo find the value
Question: Given that BE bisects ∠CEA, which statements must be true? Select THREE options.
(See attachment below for the figure)
m∠CEA = 90°
m∠CEF = m∠CEA + m∠BEF
m∠CEB = 2(m∠CEA)
∠CEF is a straight angle.
∠AEF is a right angle.
Answer:
m∠CEA = 90°
∠CEF is a straight angle.
∠AEF is a right angle
Step-by-step explanation:
Line AE is perpendicular to line CF, which is a straight line. This creates two right angles, <CEA and <AEF.
Angle on a straight line = 180°. Therefore, m<CEA + m<AEF = m<CEF. Each right angle measures 90°.
Thus, the three statements that must be TRUE are:
m∠CEA = 90°
∠CEF is a straight angle.
∠AEF is a right angle
87.5
Tall. /. Shadow
3 / 1.74=. X /. 50.75
Cross multiply
152.25= 3x
Divide by 3
X= 87.5
Answer:
a) maximum; the parabola opens downward
b) positive; it must lie above the x-axis
c) x = 1.5
Step-by-step explanation:
The x-intercepts of a function are the points where the graph of the function crosses the x-axis. The y-values there are zero.
The "differences" of a function are related to the average slope between adjacent points. Second differences are related to the rate of change of the slope of the function. When <em>second differences are negative</em>, as here, the slope of the quadratic function is decreasing, becoming more negative. We say the <em>curvature</em> of the function is <em>negatve</em>, and that it <em>opens downward</em>.
__
<h3>a, b.</h3>
If the graph of the parabola opens downward, and it crosses the x-axis, it must have a <em>maximum</em> that is a <em>positive value of y</em>.
__
<h3>c.</h3>
The graph of a parabola is symmetrical about its vertex. That means points on the same horizontal line are the same distance from the line of symmetry, which must go through the vertex. The x-coordinate of the vertex will be the x-coordinate of the midpoint between the two x-intercepts:
x = (-2 +5)/2 = 3/2
The x-coordinate of the vertex is x = 1.5.
______
<em>Additional comment</em>
The attachment shows a table with three evenly-spaced points on the curve. The calculations show first differences (d1) and second differences (d2). You can see that the sign of the second diffference is negative, in agreement with the given conditions.