Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
Answer:
6.2 g
Explanation:
In a first-order decay, the formula for the amount remaining after <em>n</em> half-lives is
where
<em>N</em>₀ and <em>N</em> are the initial and final amounts of the substance
1. Calculate the <em>number of half-lives</em>.
If
2. Calculate the <em>final mass</em> of the substance.
Answer:
Hydrogen ions
Explanation: acids will produce hydrogen ions, I asked my teacher. Please tell me if we are wrong.
The pressure in the flask is 3.4 atm.
<em>pV</em> = <em>nRT
</em>
<em>T</em> = (20 + 273.15) K = 293.15 K
<em>p</em> = (<em>nRT</em>)/<em>V</em> = (1.4 mol × 0.082 06 L·atm·K⁻¹mol⁻¹ × 293.15 K)/10 L = 3.4 atm
Answer:
potential or pontenz Hydrogen is the negative logarithm of molar hydrogen ion concentration.
Explanation:
potential Hydrogen or potenz Hydrogen stands for pH
potenz is in german
![{ \tt{pH = - log [H {}^{ + } ]}}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7BpH%20%3D%20%20-%20%20log%20%5BH%20%7B%7D%5E%7B%20%2B%20%7D%20%5D%7D%7D)