Answer:
By increasing the pressure, the molar concentration of N2O4 will increase
Explanation:
We have the equation 2NO2 ⇔ N2O4
This equation is reversible and exotherm. By <u>decreasing the temperature</u>, the reaction will produce more energy, so the reaction will move to the right. But a lower temperature also lowers the rate of the process, so, the temperature is set at a compromise value that allows N2O4 to be made at a reasonable rate with an equilibrium concentration that is not too unfavorable
So <u>increasing the temperature</u> will shift the equilibrium to the left. The equilibrium shifts in the direction that consumes energy.
If we d<u>ecrease the concentration of NO2</u>, the equilibrium will shift to the left, resulting in forming more reactants.
To increase the molar concentration of the product N2O4, we have to <u>increase the pressure</u> of the system.
NO2 takes up more space than N2O4, so increasing the pressure would allow the reactant to collide more form more product.
By increasing the pressure, the molar concentration of N2O4 will increase
The energy of the carbide released is 7262.5MJ.
<h3>What is the energy?</h3>
We know that the reaction between calcium oxide and carbon occurs in accordance with the reaction;
. The reaction is seen to produce 464.8kJ of energy per mole of carbide produced.
Number of moles of
produced = 1000 * 10^3 g/64 g/mol
= 15625 moles of calcium carbide
If 1 mole of
transfers 464.8 * 10^3 J
15625 moles of calcium carbide transfers 15625 moles * 464.8 * 10^3 J/ 1 mol
= 7262.5MJ
Learn more about reaction enthalpy:brainly.com/question/1657608
#SPJ1
Answer:
The water will eventually become the same temature (A)
Carbon dioxide it should be water oxygen
Complete Question
The complete question is shown on the first uploaded image
Answer:
The concentration of
that should used originally is 
Explanation:
From the question we are told that
The necessary elementary step is

The time taken for sixth of 0.5 M of reactant to react 
The time available is 
The desired concentration to remain
Let Z be the reactant , Y be the first product and X the second product
Generally the elementary rate law is mathematically as

Where k is the rate constant ,
is the concentration of Z
From the elementary rate law we see that the reaction is second order (This because the concentration of the reactant is raised to power 2 )
For second order reaction

Where
is the initial concentration of Z which a value of 
From the question we are told that it take 9 hours for the concentration of the reactant to become


So


=> 
For 




