Answer:
V₂ = 111.3 mL
Explanation:
Given data:
Initial volume of gas = 50.0 mL
Initial temperature = standard = 273.15 K
Final volume = ?
Final temperature = 335 °C (335+273.15 = 608.15 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 50.0 mL ×608.15 K / 273.15 k
V₂ = 30407.5 mL.K / 273.15 K
V₂ = 111.3 mL
Answer:
The temperature, however, greatly affects the rate of a chemical reaction. As you heat a substance, its molecules move faster and are more likely to react. Some reactants even require some heat to initiate a reaction. Reaction Rates and Temperature
Explanation:
mass percent concentration = 15.7 %
molar concentration of glucose solution 1.03 M
Explanation:
To calculate the mass percent concentration of the solution we use the following formula:
concentration = (solute mass / solution mass) × 100
solute mass = 60.5 g
solution mass = solute mass + water mass
solution mass = 60.5 + 325 = 385.5 g (I used the assumption that the solution have a density of 1 g/mL)
concentration = (60.5 / 385.5) × 100 = 15.7 %
Now to calculate the molar concentration (molarity) of the solution we use the following formula:
molar concentration = number of moles / volume (L)
number of moles = mass / molecular weight
number of moles of glucose = 60.5 / 180 = 0.336 moles
molar concentration of glucose solution = 0.336 / 0.325 = 1.03 M
Learn more about:
molarity
brainly.com/question/10053901
#learnwithBrainly