Answer:
480
Step-by-step explanation:
1200 times 0.4 equals 480
To solve this we are going to use the future value of annuity ordinary formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of payments per year

is the number of years
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

Since the deposit is made semiannually, it is made 2 times per year, so

.
Since the type of the annuity is ordinary, payments are made at the end of each period, and we know that we have 2 periods, so

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=6200[ \frac{(1+ \frac{0.06}{2} )^{(2)(5)} -1}{ \frac{0.06}{2} } ]](https://tex.z-dn.net/?f=FV%3D6200%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.06%7D%7B2%7D%20%29%5E%7B%282%29%285%29%7D%20-1%7D%7B%20%5Cfrac%7B0.06%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$71,076.06</span>
Yes. Think of it like this. You borrowed $1 from your friend for a candy bar. You now have -$1 because you owe your friend money. If you ask your friend for another $5 because you found another thing you wanted you have -$6. When you already have a negative, you are subtracting even more from that, which brings you to an even higher negative number
Question: The sample data and the scatter plot was not added to your question. See the attached file for the scatter plot.
Answer: Yes
Step-by-step explanation:
From scatter plot, it was discovered that there is a linear relationship between the two variables and both variables are quantitative.
Therefore, it appropriate to use the correlation coefficient to describe the strength of the relationship between "Time" and "Fish Quality"?