Total ratio = 4+7 = 11
33/11 = 3
4x3 = 12
7x3 = 21
so the two groups are 12:21
which is also = 4:7
We will get the number of possible selections, and then subtract the number less than 25 cents.
We can choose the number of dimes 5 ways 0,1,2,3 or 4.
We can choose the number of nickels 4 ways 0,1,2 or 3.
We can choose the number of quarters 3 ways 0,1, or 2.
That's 5*4*3 = 60 selections
Now we must subtract from the 60 the number of selections of coins that are less than 25 cents. These will involve only dimes and nickels.
To get a selection of coin worth less than 25 cents:
If we use no dimes, we can use 0,1,2 on all 3 nickels.
That's 4 selections less than 25 cents. (that includes the choice of No coins at all in the 60, which we must subtract).
If we use exactly 1 dime , we can use 0,1,2, or all 3 nickels.
That's the 3 combinations less than 25 cents.
And there is 1 other selection less than 25 cents, 2 dimes and no nickels.
So that's 4+3+1 = 8 selections which we must subtract from the 60.
Answer 60-8 = 52 selections of coins worth 25 cents or more.
Answer:
38
Step-by-step explanation:
add all the numbers and divide that number by the amount of numbers there.
34+46+52+29+41+38+36+28 / 8 = 304/8 = 38
Of each ones place.... Or ... The sum of each number? Just trying to help.....
Suppose the length of each side of the cube is x, so the volume must be:
x^3.
If the volume is 15 cm^3, so the length must be cuberoot(15) which is not integer,. So, the volume of the cube with integer side never equal with 15 cm^3