There was 288 children at the amusement park.
86+41=127=x
360-2(127)=106
y=106
Answer:
5(10-3)=8 is False
Step-by-step explanation:
5(10-3)=35
check the picture below on the top side.
we know that x = 4 = b, therefore, using the 30-60-90 rule, h = 4√3, and DC = 4+8+4 = 16.
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=8\\ b=\stackrel{DC}{16}\\ h=4\sqrt{3} \end{cases}\implies A=\cfrac{4\sqrt{3}(8+16)}{2} \\\\\\ A=2\sqrt{3}(24)\implies \boxed{A=48\sqrt{3}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%0A%5Cbegin%7Bcases%7D%0Aa%2Cb%3D%5Cstackrel%7Bbases%7D%7Bparallel~sides%7D%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Aa%3D8%5C%5C%0Ab%3D%5Cstackrel%7BDC%7D%7B16%7D%5C%5C%0Ah%3D4%5Csqrt%7B3%7D%0A%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B4%5Csqrt%7B3%7D%288%2B16%29%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D2%5Csqrt%7B3%7D%2824%29%5Cimplies%20%5Cboxed%7BA%3D48%5Csqrt%7B3%7D%7D)
now, check the picture below on the bottom side.
since we know x = 9, then b = 9, therefore DC = 9+6+9 = 24, and h = b = 9.
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=6\\ b=\stackrel{DC}{24}\\ h=9 \end{cases}\implies A=\cfrac{9(6+24)}{2} \\\\\\ A=\cfrac{9(30)}{2}\implies \boxed{A=135}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%0A%5Cbegin%7Bcases%7D%0Aa%2Cb%3D%5Cstackrel%7Bbases%7D%7Bparallel~sides%7D%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Aa%3D6%5C%5C%0Ab%3D%5Cstackrel%7BDC%7D%7B24%7D%5C%5C%0Ah%3D9%0A%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B9%286%2B24%29%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D%5Ccfrac%7B9%2830%29%7D%7B2%7D%5Cimplies%20%5Cboxed%7BA%3D135%7D)
Answer:
D)2
Step-by-step explanation:
ƒ(x) = x²/4 - 5; 3 ≤ x ≤ 5
Calculate the values of f(3) and f(5)
f(3) = 3²/4 - 5 = 9/4 - 5 = -2.75
f(5) = 5²/4 - 6 = 25/4 - 5 = 1.25
Calculate the average rate of change
Rate of change = (y₂ - y₁)/(x₂-x₁) = [1.25 -(-2.75)]/(5 - 3) = 4.00/2
= 2.00
The average rate of change is 2.00.
In the figure below, the red curve represents the function ƒ(x), while the black dashed line represents the average rate of change over the interval (3, 5).
The value of ƒ(x) increases by two units for every unit that x increases.