1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
12

Can somebody please help me, i really didnt understand my teacher at all

Mathematics
1 answer:
Kamila [148]3 years ago
4 0

Answer:

Step-by-step explanation:

It is a solution because if you plug in 84 for b you get 84/12 = 7

You might be interested in
State the number of possible triangles that can be formed using the given measurements.
romanna [79]

Answer:  39) 1              40) 2

                41) 1              42) 0

<u>Step-by-step explanation:</u>

39)     ∠A = ?        ∠B = ?       ∠C = 129°

            a = ?          b = 15         c = 45

Use Law of Sines to find ∠B:

\dfrac{\sin B}{b}=\dfrac{\sin C}{c} \rightarrow\quad \dfrac{\sin B}{15}=\dfrac{\sin 129}{45}\rightarrow \quad \angle B=15^o\quad or \quad \angle B=165^o

If ∠B = 15°, then ∠A = 180° - (15° + 129°) = 36°

If ∠B = 165°, then ∠A = 180° - (165° + 129°) = -114°

Since ∠A cannot be negative then ∠B ≠ 165°

∠A = 36°        ∠B = 15°       ∠C = 129°       is the only valid solution.

40)      ∠A = 16°        ∠B = ?       ∠C = ?

             a = 15           b = ?         c = 19

Use Law of Sines to find ∠C:

\dfrac{\sin A}{a}=\dfrac{\sin C}{c} \rightarrow\quad \dfrac{\sin 16}{15}=\dfrac{\sin C}{19}\rightarrow \quad \angle C=20^o\quad or \quad \angle C=160^o

If ∠C = 20°, then ∠B = 180° - (16° + 20°) = 144°

If ∠C = 160°, then ∠B = 180° - (16° + 160°) = 4°

Both result with ∠B as a positive number so both are valid solutions.

Solution 1:  ∠A = 16°        ∠B = 144°       ∠C = 20°    

Solution 2:  ∠A = 16°        ∠B = 4°       ∠C = 160°    

41)       ∠A = ?        ∠B = 75°       ∠C = ?

             a = 7           b = 30         c = ?

Use Law of Sines to find ∠A:

\dfrac{\sin A}{a}=\dfrac{\sin B}{b} \rightarrow\quad \dfrac{\sin A}{7}=\dfrac{\sin 75}{30}\rightarrow \quad \angle A=13^o\quad or \quad \angle A=167^o

If ∠A = 13°, then ∠C = 180° - (13° + 75°) = 92°

If ∠A = 167°, then ∠C = 180° - (167° + 75°) = -62°

Since ∠C cannot be negative then ∠A ≠ 167°

∠A = 13°        ∠B = 75°       ∠C = 92°       is the only valid solution.

42)      ∠A = ?         ∠B = 119°       ∠C = ?

             a = 34         b = 34           c = ?

Use Law of Sines to find ∠A:

\dfrac{\sin A}{a}=\dfrac{\sin B}{b} \rightarrow\quad \dfrac{\sin A}{34}=\dfrac{\sin 119}{34}\rightarrow \quad \angle A=61^o\quad or \quad \angle A=119^o

If ∠A = 61°, then ∠C = 180° - (61° + 119°) = 0°

If ∠A = 119°, then ∠C = 180° - (119° + 119°) = -58°

Since ∠C cannot be zero or negative then ∠A ≠ 61° and ∠A ≠ 119°

There are no valid solutions.

6 0
3 years ago
Seth wants to buy a new skateboard that cost $230.55 if he earns $8.70 an hour pulling weeds how many hours will have to work to
lutik1710 [3]

Answer:

230.55/8.70 = 26.5 hours (round as appropriate)

3 0
3 years ago
Find the slope of the line
konstantin123 [22]

Answer:

2 or 2/1

Step-by-step explanation:

<u>Rise</u>  =  <u>2</u>

Run  =  1

5 0
3 years ago
Can anyone help me with this?
mart [117]

Answer:

<h2>(1, 5)</h2>

Step-by-step explanation:

\left\{\begin{array}{ccc}y=3x+2&(1)\\y=5x&(2)\end{array}\right\\\\\text{substitute (2) to (1):}\\\\5x=3x+2\qquad\text{subtract 3x from both sides}\\2x=2\qquad\text{divide both sides by 2}\\x=1\\\\\text{Put the value of x to (2):}\\\\y=5(1)=5

7 0
3 years ago
M∠LON=77 ∘ m, angle, L, O, N, equals, 77, degrees \qquad m \angle LOM = 9x + 44^\circm∠LOM=9x+44 ∘ m, angle, L, O, M, equals, 9,
timama [110]

Answer:

Step-by-step explanation:

Given

<LON = 77°

<LOM = (9x+44)°

<MON = (6x+3)°

The addition postulate is true for the given angles since tey have a common point O:

<LON = <LOM+<MON

Since we are not told what to find we can as well look for the value of x, <LOM and <MON

Substitute the given parameters and get x

77 = 9x+44+6x+3

77 = 15x+47

77-47 = 15x

30 = 15x

x = 30/15

x = 2

Get <LOM:

<LOM = 9x+44

<LOM = 9(2)+44

<LOM = 18+44

<LOM = 62°

Get <MON:

<MON = 6x+3

<MON = 6(2)+3

<MON = 12+3

<MON = 15°

6 0
4 years ago
Other questions:
  • Can you show me the steps for this equation and answerF(x)=(x-3)^2+2
    14·2 answers
  • Chloe filed for Chapter 13 bankruptcy in 2008. Even if she planned to take the maximum time allowed under Chapter 13 to repay he
    11·2 answers
  • Which is the completely factored form of 3x^2-12x-15
    12·1 answer
  • Help me please!! If you do you will get 25 points :)
    9·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B3x%20%2B%2013%7D%20%20%3D%20%20%5Csqrt%7B6x%20%2B%201%7D%20" id="TexFormula1" tit
    5·2 answers
  • Complete the equation of the line through (6,-6) and (8,8). Y =
    13·1 answer
  • What is the best measurement to eastimate the volume of a juice box
    15·1 answer
  • Make all the one or two digit Prime numbers using digits 1 to 9 ( use each digit only once).
    10·1 answer
  • Mike wrote a list of six positive integers on his paper. He chose the first and
    8·1 answer
  • Solve 3cot (2x) =- Route3 for<br> x, 0 = x &lt; 360
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!