Answer:
a. 4
Explanation:
Hi there!
The equation of kinetic energy (KE) is the following:
KE = 1/2 · m · v²
Where:
m = mass of the car.
v = speed of the car.
Let´s see how would be the equation if the velocity is doubled (2 · v)
KE2 = 1/2 · m · (2 · v)²
Distributing the exponent:
KE2 = 1/2 · m · 2² · v²
KE2 = 1/2 · m · 4 · v²
KE2 = 4 (1/2 · m · v²)
KE2 = 4KE
Doubling the velocity increased the kinetic energy by 4.
Protons, electrons, and neutrons. The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge).
Answer:
acceleration of person = 9.77 m/s²
Explanation:
given data
latitude = 40 degree
to find out
Calculate the acceleration of a person
solution
we know that here 40 degree = 0.698 rad
so
acceleration of person = g - ω²R ...............1
and 1 rotation complete in 24 hours = 360 degree
here g is 9.81
so we know Earth angular speed ω = 7.27 ×
rad/s and R is earth radius that is 6.37 ×
m
so
put here value in equation 1 we get
acceleration of person = g - ω²R
acceleration of person = 9.81 - (7.27 ×
)² × 6.37 ×
acceleration of person = 9.77 m/s²


Now


- Lower mass=Higher acceleration
- Lower Force=Lower Acceleration
Option B has lowest mass and highest force hence its correct
Answer:
The velocity will be v1 = 0.58[m/s]
Explanation:
This problem can be solved by the law of conservation of the moment, which explains that the moment of a system remains constant because there are no external forces acting on it.
We have the following initial data:
m1 = mass of the skater = 55 [kg]
m2 = mass of the ball = 3 [kg]
v2 = velocity of the ball = 8 [m/s]
Therefore:
![m_{1}*v_{1}+m_{2}*v_{2}=m_{1}*v_{1}+m_{2}*v_{2}\\(50*0)+(3*0)=(50*v_{1})+(3*8)\\50+3-24=50*v_{1}\\v_{1}= 0.58[m/s]](https://tex.z-dn.net/?f=m_%7B1%7D%2Av_%7B1%7D%2Bm_%7B2%7D%2Av_%7B2%7D%3Dm_%7B1%7D%2Av_%7B1%7D%2Bm_%7B2%7D%2Av_%7B2%7D%5C%5C%2850%2A0%29%2B%283%2A0%29%3D%2850%2Av_%7B1%7D%29%2B%283%2A8%29%5C%5C50%2B3-24%3D50%2Av_%7B1%7D%5C%5Cv_%7B1%7D%3D%200.58%5Bm%2Fs%5D)