Answer:
The mass and velocity for kinetic energy. Potential Energy: How high an object is and the mass in kilograms or it is the weight in and how high an object is. There are two formulas to calculate potential energy, but the one with grams is used more often.
Explanation:
Hope this helps!
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).
Explanation:
They will repel, meaning that they are made of an electrical conductor.
Answer:
11700j
Explanation:
add the two because the plate has to maintain the temp.
2700+9000=11700
Answer: B
It can exist in many alloys, usually with a carbon base
Explanation:
Iron forms many alloys with a carbon base. Steel is an alloy of iron and carbon. There are many different types of steel needed for different applications. Various metals are added to tune the steel to the required properties. For instance, stainless steel contains 10-30% chromium in addition to iron and a low percentage of carbon. Steel remains an extremely versatile alloy used for many different purposes.