I think is A or B it depends on like what the trying to answer
Explanation:
Stern et al. (1999) and Stern (2000), define this variable as those general visions about the world, reflected in the beliefs that people express about their relationship with the environment and nature.हेलो फ्रेंड्स मारो किसी को इनबॉक्स कैसे करें
Answer:
The longest wavelength in vacuum for which there is constructive interference for the reflected light, λ = 3472.
Explanation:
Refractive index of Glass (given) = 1.5
For the case of a constructive interference,
2nt = (m + 1/2) λ
For case 1,
2nt = (m + 1/2) 496 nm
For case 2,
2nt = (m +1+ 1/2) 386 nm
2nt = (m+3/2) * 386 nm
(m + 1/2) 496 nm = (m+3/2) * 386 nm
m = 3
Inserting the value of m in 1.
2nt = (m + 1/2) 496 nm
2*1.5t = (3 + 1/2) * 496 nm
t = ((3 + 1/2) * 496 nm)/ 3
t = 578.6 nm
The thickness of the glass, t = 578.6 nm
b)
It is generally known that for constructive interference,
2nt = (m + 1/2) λ
λ = 2nt / ((m + 1/2))
For Longest Wavelength, m = 0
λ = 2*1.5*578.6/ (1/2)
λ = 3472 nm
Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.