Answer:
The answer to your question is: C. -9.81 m/s²
Explanation:
A. 9.81 m/s² acceleration is considered positive when it goes to the center of the earth, so this option is incorrect.
B. 0 m/s² This option is incorrect because acceleration is 0 for a linear motion without acceleration.
C. -9.81 m/s² If a projectile goes to the sky, then the acceleration will be negative.
D. It is not constant. Acceleration is constant.
Answer:
x = A sin ω t describes the displacement of the particle
v = A ω cos ω t
a = -A ω^2 sin ω t
a (max) = -A ω^2 is the max acceleration (- can be ignored here)
ω = (K/ m)^1/2 for SHM
F = - K x^2 restoring force of spring
K = 4.34 / .0745^2 = 782 N / m
ω = (782 / .297)^1/2 = 51.3 / sec
a (max) = .0745 * 782 / .297 = 196 m / s^2
gas molecules having at least one oxygen atom
They will both hit the ground at the same time because gravitational acceleration for all objects is the same.
Answer:
if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º
Explanation:
When a ray of light falls on a surface if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º this can be explained by Newton's third law, the light when arriving pushes the atoms of the medium that is more dense, and these atoms respond with a force of equal magnitude, but in the opposite direction.
When the fractional index is lower than that of the medium where the reflacted beam travels, notice a change in phase.
Also, when light penetrates the medium, it modifies its wavelength
λ = λ₀ / n
We take these two aspects into account, the condition for contributory interference is
d sin θ = (m + 1/2) λ
for destructive interference we have
d sin θ = m λ
in general this phenomenon is observed at 90º
2 d = (m +1/2) λ° / n
2nd = (m + ½) λ₀