Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
Answer:
x=11
Step-by-step explanation:
(4x)+(3x+13)=90
if you look at the beam, it includes a 90 degree angle.
7x+13=90
distributive property
7x=77
subtracted both sides by 13
x=11
divided both sides by 7 to isolate x
4(11) 3(11)+13
44 33+13
36
4(x) is the larger angle
Answer:
Step-by-step explanation:
By the Mean Value Theorem, there is at least one number, c, in the interval (1,6) such that
f'(c) = [f(6) - f(1)]/ (6 - 1)
So, f(6) - f(1) = 5f'(c).
Since 2 ≤ f'(c) ≤ 4, 10 ≤ 5f'(c) ≤ 20
So, f(6) - f(1) is between 10 and 20.
5/10 because it is equivalent to 1/2
So the answer is 5/10