Answer:
C) True carrying large loads on the outside of the vehicle
Explanation:
The aerodynamic property of an object depends on its outer shape. In general, objects should be thin in the front and not completely flat in the back, to avoid the eddies that create a great Arrate, losing all the aerodynamics of the system.
With this we can review the final statements
A) False The air conditioner is used with the glasses raised, so the exterior shape of the car does not change and its aerodynamics remains unchanged.
B) Phallus. This does not change the outer shape, I get a small inclination,
C) True. External loads dramatically change the external shape of the vehicle significantly reducing its aerodynamic characteristics.
Answer:
I study physics too, want me to study with you?
Answer:
c. above the point of unit elasticity.
Explanation:
The elastic portion of the downward-sloping straight-line demand curve lies above the point of unit elasticity. Supply and demand are fundamental concept in economics. The demand curve shows how much of a good people will want at a different prices. The demands curves illustrates the intuition why people purchase a good for a lower price. For the demand curve, the price is always shown on the vertical axis and the demand curve is shown on the horizontal axis. Thus , the quantity demanded increases as the price gets lower. However, the price elasticity of the demand curve varies along the demand curve. This is because there is a key distinction between the gradient and the elasticity. The gradient which is the slope of the line is always the same in the demand curve but elasticity of the demand changes in the percentage of the quantity demand. Therefore, elasticity will vary along the downward-sloping straight - line demand curve. So, in a downward-sloping straight-line demand curve, the elastic portion is usually above the point of unit elasticity
Answer:
Thrust developed = 212.3373 kN
Explanation:
Assuming the ship is stationary
<u>Determine the Thrust developed</u>
power supplied to the propeller ( Punit ) = 1900 KW
Duct distance ( diameter ; D ) = 2.6 m
first step : <em>calculate the area of the duct </em>
A = π/4 * D^2
= π/4 * ( 2.6)^2 = 5.3092 m^2
<em>next : calculate the velocity of propeller</em>
Punit = (A*v*β ) / 2 * V^2 ( assuming β = 999 kg/m^3 ) also given V1 = 0
∴V^3 = Punit * 2 / A*β
= ( 1900 * 10^3 * 2 ) / ( 5.3092 * 999 )
hence V2 = 8.9480 m/s
<em>Finally determine the thrust developed </em>
F = Punit / V2
= (1900 * 10^3) / ( 8.9480)
= 212.3373 kN