1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikentia [17]
3 years ago
11

Our sun is in which stage of its life cycle?

Physics
2 answers:
puteri [66]3 years ago
5 0
The answer is, "B", "Main Sequence".
kiruha [24]3 years ago
4 0
B. Main sequence is the answer
You might be interested in
A gold sphere of radius R=100 μm and density 19g/cm^3 falls through water. Given the viscosity of water is about 10^-3​ Pa s and
icang [17]

The terminal velocity of gold sphere is 39.2 cm/s

<h3>What is terminal velocity?</h3>

Terminal velocity is the maximum velocity attainable for an object as it falls through a fluid.

<h3>How to calculate the terminal velocity of the gold sphere?</h3>

The terminal velocity of the gold sphere is given by v = 2gr²(ρ - σ)/9η where

  • g = acceleration due to gravity = 9.8 m/s²,
  • r = radius of sphere = 100 μm = 100 × 10⁻⁶ m = 10⁻⁴ m = 10⁻² cm,
  • ρ = density of sphere = 19 g/cm³,
  • σ = density of water = 1.0 g/cm³ and
  • η = viscosity of water = 10⁻³ Pa-s

So, susbtituting the values of the variables into the equation, we have that

v = 2gr²(ρ - σ)/9η

v = 2 × 9.8m/s²× (10⁻² cm)²(19 g/cm³ - 1.0 g/cm³)/(9 × 10⁻³ Pa-s)

v = 2 × 9.8 m/s² × 10⁻⁴ cm² × (18 g/cm³)/(9 × 10⁻³ Pa-s)

v = 2 × 980 cm/s² × 10⁻⁴ cm² × 2 g/cm³/(1 × 10⁻³ Pa-s)

v = 3920 g/s² × 10⁻⁴/(1 × 10⁻³ Pa-s)

v = 392 cm/s × 10³ × 10⁻⁴

v = 392 × 10⁻¹ cm/s

v = 39.2 cm/s

So, the terminal velocity is 39.2 cm/s

Learn more about terminal velocity of sphere here:

brainly.com/question/21684177

#SPJ1

4 0
1 year ago
You plug in an extension cord and you have to be very careful around electrical outlet. However you can handle his extension cor
IrinaVladis [17]
The second one because you don't get shocked by plugging in something you can get electricted by putting something thin in the outlet then it will send a shock to your hand
4 0
2 years ago
Read 2 more answers
Energy in the form of motion is potential energy.<br> True<br> False
Veseljchak [2.6K]

False

Energy in the form of motion is kinetic energy

Stored energy is called potential energy

5 0
3 years ago
You are trying to overhear a juicy conversation, but from your distance of 24.0m , it sounds like only an average whisper of 40.
Neporo4naja [7]

Answer:

The distance is r_2  =  0.24 \  m

Explanation:

From the question we are told that

       The  distance from the conversation is r_1    =  24.0 \ m

       The  intensity of  the sound at your position is  \beta _1 =  40 dB

        The  intensity at the sound at the new position is  \beta_2 =  80.0dB

Generally the intensity in  decibel is  is mathematically represented as

      \beta  =  10dB log_{10}[\frac{d}{d_o} ]

The intensity is  also mathematically represented as

      d =  \frac{P}{A}

So

    \beta  =  10dB *  log_{10}[\frac{P}{A* d_o} ]

=>   \frac{\beta}{10}  =  log_{10} [\frac{P}{A (l_o)} ]

From the logarithm definition

=>    \frac{P}{A  *  d_o}  =  10^{\frac{\beta}{10} }

=>      P =  A (d_o ) [10^{\frac{\beta }{ 10} } ]

Here P is the power of the sound wave

 and  A is the cross-sectional area of the sound wave  which is generally in spherical form

Now the power of the sound wave at the first position is mathematically represented as

               P_1 =  A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]

Now the power of the sound wave at the second  position is mathematically represented as

               P_2 =  A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]

Generally  power of the wave is constant at both positions  so  

    A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]  = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]

      4 \pi r_1 ^2   [10^{\frac{\beta_1 }{ 10} } ]  = 4 \pi r_2 ^2   [10^{\frac{\beta_2 }{ 10} } ]

        r_2 =  \sqrt{r_1 ^2 [\frac{10^{\frac{\beta_1}{10} }}{ 10^{\frac{\beta_2}{10} }} ]}

       substituting value

        r_2 =   \sqrt{ 24^2 [\frac{10^{\frac{ 40}{10} }}{10^{\frac{80}{10} }} ]}

        r_2  =  0.24 \  m

     

7 0
3 years ago
How does the resting energy expenditure change as a person ages
Lady bird [3.3K]

Answer:

Resting energy expenditure (REE) decreases from young to old age by 1% to 2% per decade [1]. This is partly explained by age-related decreases in fat free mass (FFM) [2]. FFM accounts for 50%–70% of the variance in REE [3,4,5].Explanation:

6 0
2 years ago
Other questions:
  • Mark and David are loading identical cement blocks onto David’s pickup truck. Mark lifts his block straight up from the ground t
    6·1 answer
  • The magnetic flux that passes through one turn of a 18-turn coil of wire changes to 4.5 wb from 13.0 wb in a time of 0.072 s. th
    13·1 answer
  • ANSWER ASAP PLZZZZ!!!!!!!!
    6·1 answer
  • In a double-slit experiment, light from two monochromatic light sources passes through the same double slit. The light from the
    13·1 answer
  • One cubic meter (1.0 m3
    11·1 answer
  • Select whether the argument is an example of a deductive or an inductive argument:
    9·1 answer
  • A local AM radio station broadcasts at a frequency of 696 KHz. Calculate the energy of the frequency at which it is broadcasting
    8·1 answer
  • It is easier to climb up a slanted slope than a vertical slope<br>​
    13·2 answers
  • Take a close look at the energy transfers and transformations shown in the above diagram. Which type of energy is transformed in
    10·1 answer
  • Can someone PLEASE help me??
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!