(8 plus of minus radical 64 + 216
divided by
6
(8 + or - 16.73320053)/6
Numerator
<span><span>cos<span>(<span>π/2</span>−x)</span></span>=<span>cos<span>(<span>π/2</span>)</span></span><span>cosx</span>+<span>sin<span>(<span>π/2</span>)</span></span><span>sinx</span></span>
now <span><span>cos<span>(<span>π/2</span>)</span></span>=0 and <span>sin<span>(<span>π/2</span>)</span></span>=1</span>
simplifies to : 0 + sinx = sinx
Denominator
<span><span>sin<span>(<span>π/2</span>−x)</span></span>=<span>sin<span>(<span>π/2</span>)</span></span><span>cosx</span>+<span>cos<span>(<span>π/2</span>)</span></span><span>sinx</span></span>
simplifies to : cosx + 0 = cosx
<span>⇒<span><span>cos<span>(<span>π/2</span>−x)</span></span><span>sin<span>(<span>π/2</span>−x)</span></span></span>=<span><span>sinx/</span><span>cosx</span></span>=<span>tan<span>x</span></span></span>
Answer:
Hypotenuse MN = 10.54 ft (Approx.)
Step-by-step explanation:
Given:
Base OM = 9.6 ft
Angle θ = 13'
Find:
Hypotenuse MN
Computation:
Using trigonometry function
Cos θ = Base / Hypotenuse
Cos 13 = 9.6 / Hypotenuse
0.97 = 9.6 / Hypotenuse
Hypotenuse MN = 10.54 ft (Approx.)
Answer:
um
Step-by-step explanation: