Answer:

Step-by-step explanation:
Given equation:

To find the angle measure of
Solution:
In order to find the angle measure
, we will isolate
on left side by carrying out math operations on both sides.
We have:

Subtracting both sides by


Subtracting both sides by 1°.

Dividing both sides by 3.


Converting fraction to mixed number by dividing and writing the quotient as whole number and the remainder as numerator.
∴
(Answer)
Answer:
y=18
Step-by-step explanation:
3y-3=15+2y
3y-3+3=15+2y+3
3y=2y+18
3y-2y=2y+18-2y
y=18
I hope this helps!
The cake = 1
1-1/6=5/6
60% as a fraction =3/5
5/6-3/5
25/30-18/30
7/30
There are 7/30 of the original cake left.
Hope this helps :)
Answer:
y=mxtb right? so... y= 0+8
Step-by-step explanation:
i think so right? im sorry if im wrong
If the coefficient matrix has a pivot in each column, it means that it is shaped like this:
![A=\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Da_%7B1%2C1%7D%26a_%7B1%2C2%7D%26a_%7B1%2C3%7D%26a_%7B1%2C4%7D%5C%5C0%26a_%7B2%2C2%7D%26a_%7B2%2C3%7D%26a_%7B2%2C4%7D%5C%5C0%260%26a_%7B3%2C3%7D%26a_%7B3%2C4%7D%5C%5C0%260%260%26a_%7B4%2C4%7D%5Cend%7Barray%7D%5Cright%5D)
So, the correspondant system

will look like this:
![\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]\cdot \left[\begin{array}{c}x_1\\x_2\\x_3\\x_4\end{array}\right] = \left[\begin{array}{c}b_1\\b_2\\b_3\\b_4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Da_%7B1%2C1%7D%26a_%7B1%2C2%7D%26a_%7B1%2C3%7D%26a_%7B1%2C4%7D%5C%5C0%26a_%7B2%2C2%7D%26a_%7B2%2C3%7D%26a_%7B2%2C4%7D%5C%5C0%260%26a_%7B3%2C3%7D%26a_%7B3%2C4%7D%5C%5C0%260%260%26a_%7B4%2C4%7D%5Cend%7Barray%7D%5Cright%5D%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5C%5Cx_4%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Db_1%5C%5Cb_2%5C%5Cb_3%5C%5Cb_4%5Cend%7Barray%7D%5Cright%5D)
This turn into the following system of equations:

The last equation is solvable for
: we easily have

Once the value for
is known, we can solve the third equation for
:

(recall that
is now known)
The pattern should be clear: you can use the last equation to solve for
. Once it is known, the third equation involves the only variable
. Once