Answer:
Homologies - phenotypic and genetic similarities due to shared ancestry
Analogies (homoplastic) - similarities between two species due to convergent evolution instead of descent from a common ancestor with the same trait
In general, organisms that share very similar morphologies or similar DNA sequences are likely to be more closely related than organisms with vastly different structures or sequences. In some cases, however, the morphological divergence between related species can be great and their genetic divergence small (or vice versa).
(plants very different, bc diverged 50 mil years ago)
If internal anatomy, physiology, and reproductive systems are very dissimilar, probably analogous.
The more elements that are similar in two complex structures, the more likely it is that the structures evolved from a common ancestor. If genes in two organisms share many portions of their nucleotide sequences, it is likely that the genes are homologous.:
<span>Osmosis is the movement of
water molecules from an area of high water concentration to an area of low water concentration through a partially permeable membrane.</span> It happens when<span> dissolved particles
have a higher concentration on one side of a membrane, that only allows
the passage of water, than the other.</span>
The villi of the small intestine use active transport to take up nutrients after concentration has reached equilibrium.
<h3>What is Active transport?</h3>
Active transport may be defined as the process that occurs against the concentration gradient and is mediated by carrier proteins. Metabolic energy is used to move ions or molecules against a concentration gradient.
During the process of digestion, the villi in the small intestine enthrall the soluble nutrients gradually. Over time, the concentration of nutrients in the villi acquires an equilibrium with the concentration in the gut. Until here, the nutrient uptake is carried by the process of passive diffusion.
But after attaining the equilibrium, the nutrient uptake is carried by the process of active transport.
The complete question is as follows:
What part of the body uses active transport to take up nutrients after concentration has reached equilibrium?
- Lungs
- Stomach
- Small intestine
- Liver
Therefore, the correct option for this question is C, i.e. small intestine.
To learn more about Active transport, refer to the link:
brainly.com/question/18434867
#SPJ1
They would not be able to fit into a semipermeable membrane it will just pass threw