1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
14

Find the zeros of the function: f(x)=3x^2-5x+3

Mathematics
1 answer:
maks197457 [2]3 years ago
8 0

Answer:

x = 5 ± i √ 11 /6

Step-by-step explanation:

The roots (zeros) are the  x  values where the graph intersects the x-axis. To find the roots (zeros), replace  y  with  0  and solve for  x .

You might be interested in
Which shows the rational expression written using the least common denominator?
aleksandr82 [10.1K]

Answer:

(x + 1)/4x² + 4(x + 1)/4x²

Step-by-step explanation:

x+1/4x² + x+1/x²

The above can be simply as follow:

Find the least common multiple (LCM) of 4x² and x². The result is 4x²

Now Divide the LCM by the denominator of each term and multiply the result with the numerator as show below:

(4x² ÷ 4x²) × (x + 1) = x + 1

(4x² ÷ x²) × (x + 1) = 4(x + 1)

x+1/4x² + x+1/x² = [(x + 1) + 4(x + 1)]/ 4x²

= (x + 1)/4x² + 4(x + 1)/4x²

Therefore,

x+1/4x² + x+1/x² = (x + 1)/4x² + 4(x + 1)/4x²

5 0
3 years ago
What is 0.73 KL to L
Elza [17]
It is 730. the answer is 730
7 0
3 years ago
Read 2 more answers
Please solve for me
polet [3.4K]

Answer:

3₹

Step-by-step explanation:

To print cost is 3₹a manager if company print

4 0
3 years ago
3. About how much of the earth's surface is deserts?
Murrr4er [49]

Answer:

B- One-Quarter

Step-by-step explanation:

8 0
3 years ago
At one point the average price of regular unleaded gasoline was ​$3.39 per gallon. Assume that the standard deviation price per
irinina [24]

This question was not written completely

Complete Question

At one point the average price of regular unleaded gasoline was ​$3.39 per gallon. Assume that the standard deviation price per gallon is ​$0.07 per gallon and use​ Chebyshev's inequality to answer the following.

​(a) What percentage of gasoline stations had prices within 3 standard deviations of the​ mean?

​(b) What percentage of gasoline stations had prices within 2.5 standard deviations of the​ mean? What are the gasoline prices that are within 2.5 standard deviations of the​ mean?

​(c) What is the minimum percentage of gasoline stations that had prices between ​$3.11 and ​$3.67​?

Answer:

a) 88.89% lies with 3 standard deviations of the mean

b) i) 84% lies within 2.5 standard deviations of the mean

ii) the gasoline prices that are within 2.5 standard deviations of the​ mean is $3.215 and $3.565

c) 93.75%

Step-by-step explanation:

Chebyshev's theorem is shown below.

1) Chebyshev's theorem states for any k > 1, at least 1-1/k² of the data lies within k standard deviations of the mean.

As stated, the value of k must be greater than 1.

2) At least 75% or 3/4 of the data for a set of numbers lies within 2 standard deviations of the mean. The number could be greater.μ - 2σ and μ + 2σ.

3) At least 88.89% or 8/9 of a data set lies within 3 standard deviations of the mean.μ - 3σ and μ + 3σ.

4) At least 93.75% of a data set lies within 4 standard deviations of the mean.μ - 4σ and μ + 4σ.

​

(a) What percentage of gasoline stations had prices within 3 standard deviations of the​ mean?

We solve using the first rule of the theorem

1) Chebyshev's theorem states for any k > 1, at least 1-1/k² of the data lies within k standard deviations of the mean.

As stated, the value of k must be greater than 1.

Hence, k = 3

1 - 1/k²

= 1 - 1/3²

= 1 - 1/9

= 9 - 1/ 9

= 8/9

Therefore, the percentage of gasoline stations had prices within 3 standard deviations of the​ mean is 88.89%

​(b) What percentage of gasoline stations had prices within 2.5 standard deviations of the​ mean?

We solve using the first rule of the theorem

1) Chebyshev's theorem states for any k > 1, at least 1-1/k² of the data lies within k standard deviations of the mean.

As stated, the value of k must be greater than 1.

Hence, k = 3

1 - 1/k²

= 1 - 1/2.5²

= 1 - 1/6.25

= 6.25 - 1/ 6.25

= 5.25/6.25

We convert to percentage

= 5.25/6.25 × 100%

= 0.84 × 100%

= 84 %

Therefore, the percentage of gasoline stations had prices within 2.5 standard deviations of the​ mean is 84%

What are the gasoline prices that are within 2.5 standard deviations of the​ mean?

We have from the question, the mean =$3.39

Standard deviation = 0.07

μ - 2.5σ

$3.39 - 2.5 × 0.07

= $3.215

μ + 2.5σ

$3.39 + 2.5 × 0.07

= $3.565

Therefore, the gasoline prices that are within 2.5 standard deviations of the​ mean is $3.215 and $3.565

​(c) What is the minimum percentage of gasoline stations that had prices between ​$3.11 and ​$3.67​?

the mean =$3.39

Standard deviation = 0.07

Applying the 2nd rule

2) At least 75% or 3/4 of the data for a set of numbers lies within 2 standard deviations of the mean. The number could be greater.μ - 2σ and μ + 2σ.

the mean =$3.39

Standard deviation = 0.07

μ - 2σ and μ + 2σ.

$3.39 - 2 × 0.07 = $3.25

$3.39 + 2× 0.07 = $3.53

Applying the third rule

3) At least 88.89% or 8/9 of a data set lies within 3 standard deviations of the mean.μ - 3σ and μ + 3σ.

$3.39 - 3 × 0.07 = $3.18

$3.39 + 3 × 0.07 = $3.6

Applying the 4th rule

4) At least 93.75% of a data set lies within 4 standard deviations of the mean.μ - 4σ and μ + 4σ.

$3.39 - 4 × 0.07 = $3.11

$3.39 + 4 × 0.07 = $3.67

Therefore, from the above calculation we can see that the minimum percentage of gasoline stations that had prices between ​$3.11 and ​$3.67​ corresponds to at least 93.75% of a data set because it lies within 4 standard deviations of the mean.

4 0
4 years ago
Other questions:
  • What is the gcf of 3x^2 and 7y
    13·1 answer
  • Simplify (7x +2) 3 +8x
    7·2 answers
  • I don’t understand because it confused me
    9·1 answer
  • 2 1/2 divided by 4 2/5
    8·1 answer
  • H(x)= x^2 - x g(x)= 2x-2 Find (h•g)(x)
    11·1 answer
  • Directions: write an exponential function for each situation then give the value of the function for the specified period of tim
    13·1 answer
  • Find an ordered pair (x, y) that is a solution to the equat<br> 4x - y = 7
    13·2 answers
  • 4. Find the solution for the following problem. Explain your reasoning."
    5·1 answer
  • 7(-15-3+5-7)×1 step by step ​
    10·1 answer
  • Multiply by 3 and add 1 help me plz :'(
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!